分析一下import torch from torch import nn net=nn.Sequential(nn.Conv2d(3,9,kernel_size=9),nn.Sigmoid(), nn.AvgPool2d(kernel_size=2,stride=2), nn.Conv2d(9,27,kernel_size=9,stride=1),nn.Sigmoid(), nn.AvgPool2d(kernel_size=2,stride=2), nn.Conv2d(27,54,kernel_size=9),nn.Flatten(), nn.AvgPool2d(kernel_size=2,stride=2), nn.Linear(54*2*2,216),nn.Sigmoid(), nn.Linear(216,54),nn.Sigmoid(),nn.Linear(54,4))
时间: 2023-07-14 15:13:45 浏览: 94
这段代码是使用PyTorch定义了一个卷积神经网络模型。具体来说,这个模型有三个卷积层和三个全连接层。该网络接受3通道图像作为输入,第一个卷积层使用9个9x9大小的卷积核,输出通道数为9,使用sigmoid作为激活函数。接下来使用一个2x2的平均池化层进行下采样,第二个卷积层同样使用9个9x9大小的卷积核,输出通道数为27,同样使用sigmoid作为激活函数。然后再次使用一个2x2的平均池化层进行下采样,第三个卷积层使用54个9x9大小的卷积核,不使用激活函数,然后使用flatten层将输出的张量展平,接下来使用两个全连接层,第一个全连接层的输入维度为54x2x2,输出维度为216,使用sigmoid作为激活函数,第二个全连接层的输入维度为216,输出维度为54,同样使用sigmoid作为激活函数,最后一个全连接层的输出维度为4,即模型的输出维度为4。
相关问题
features_list = list(vgg19.features.children()) self.conv2_2 = torch.nn.Sequential(*features_list[:13]) self.conv3_4 = torch.nn.Sequential(*features_list[13:26]) self.conv4_4 = torch.nn.Sequential(*features_list[26: 39]) self.conv5_4 = torch.nn.Sequential(*features_list[39:-1]) self.tail_layer = features_list[-1] self.fc_layers = list(vgg19.classifier.children())[:-2] self.fc_layers = torch.nn.Sequential(*list(self.fc_layers)) self.extract_0 = torch.nn.Sequential( torch.nn.MaxPool2d(kernel_size=8, stride=8), torch.nn.Conv2d(128, self.k, kernel_size=1, stride=1) ) self.extract_1 = torch.nn.Sequential( torch.nn.MaxPool2d(kernel_size=4, stride=4), torch.nn.Conv2d(256, self.k, kernel_size=1, stride=1) )self.extract_2 = torch.nn.Sequential( torch.nn.MaxPool2d(kernel_size=2, stride=2), torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1) ) self.extract_3 = torch.nn.Sequential( torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1) ) self.fc0 = torch.nn.Linear(196, 1, bias=True) self.fc1 = torch.nn.Linear(196, 1, bias=True) self.fc2 = torch.nn.Linear(196, 1, bias=True) self.fc3 = torch.nn.Linear(196, 1, bias=True) self.fc4 = torch.nn.Linear(4096, 2 * k, bias=True) self.bn1 = torch.nn.BatchNorm1d(k) self.bn2 = torch.nn.BatchNorm1d(k) weight_init(self.fc0, self.fc1, self.fc2, self.fc3, self.fc4)
这段代码定义了一个名为 VGG19Encoder 的神经网络模型。它使用了预训练的 VGG19 模型的前四个卷积层和最后一个全连接层作为特征提取器,其中前四个卷积层被分别用于提取不同层级的特征。然后,通过几个额外的卷积层和全连接层将提取的特征转换为对输入图像中物体类别的预测。其中,提取的特征被分别送入四个全连接层中进行分类。
具体来说,代码中的各个部分的功能如下:
- `features_list = list(vgg19.features.children())`:获取 VGG19 模型的所有卷积层。
- `self.conv2_2 = torch.nn.Sequential(*features_list[:13])`:将前 13 层卷积层作为 conv2_2 层。
- `self.conv3_4 = torch.nn.Sequential(*features_list[13:26])`:将第 14 层到第 26 层卷积层作为 conv3_4 层。
- `self.conv4_4 = torch.nn.Sequential(*features_list[26: 39])`:将第 27 层到第 39 层卷积层作为 conv4_4 层。
- `self.conv5_4 = torch.nn.Sequential(*features_list[39:-1])`:将第 40 层到倒数第二层卷积层作为 conv5_4 层。
- `self.tail_layer = features_list[-1]`:将最后一层卷积层作为尾部层。
- `self.fc_layers = list(vgg19.classifier.children())[:-2]`:获取 VGG19 模型的所有全连接层,但不包括最后两层。
- `self.fc_layers = torch.nn.Sequential(*list(self.fc_layers))`:将所有全连接层组成一个新的连续的全连接层。
- `self.extract_0 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=8, stride=8), torch.nn.Conv2d(128, self.k, kernel_size=1, stride=1))`:将 conv2_2 层的输出进行最大池化和卷积操作,以提取更高级别的特征。
- `self.extract_1 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=4, stride=4), torch.nn.Conv2d(256, self.k, kernel_size=1, stride=1))`:将 conv3_4 层的输出进行最大池化和卷积操作,以提取更高级别的特征。
- `self.extract_2 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=2, stride=2), torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1))`:将 conv4_4 层的输出进行最大池化和卷积操作,以提取更高级别的特征。
- `self.extract_3 = torch.nn.Sequential(torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1))`:将 conv5_4 层的输出进行卷积操作,以提取更高级别的特征。
- `self.fc0 = torch.nn.Linear(196, 1, bias=True)`:定义一个输入为 196 的全连接层,用于分类。
- `self.fc1 = torch.nn.Linear(196, 1, bias=True)`:定义第二个输入为 196 的全连接层,用于分类。
- `self.fc2 = torch.nn.Linear(196, 1, bias=True)`:定义第三个输入为 196 的全连接层,用于分类。
- `self.fc3 = torch.nn.Linear(196, 1, bias=True)`:定义第四个输入为 196 的全连接层,用于分类。
- `self.fc4 = torch.nn.Linear(4096, 2 * k, bias=True)`:定义一个输入为 4096 的全连接层,用于分类。
- `self.bn1 = torch.nn.BatchNorm1d(k)`:定义一个 Batch Normalization 层,用于归一化数据。
- `self.bn2 = torch.nn.BatchNorm1d(k)`:定义第二个 Batch Normalization 层,用于归一化数据。
- `weight_init(self.fc0, self.fc1, self.fc2, self.fc3, self.fc4)`:对所有全连接层进行权重初始化,以提高模型的性能。
import torch.nn as nn num_classes = 131 class FruitsClassificationModel(nn.Module): def __init__(self): super(FruitsClassificationModel, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=32), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer2 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=64), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer3 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=128), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.fc = nn.Linear(in_features=18432, out_features=num_classes)
这段代码定义了一个卷积神经网络模型,用于水果图片的分类任务。该模型包含三个卷积层和一个全连接层,其中每个卷积层后面都跟着一个BatchNorm层和ReLU激活函数,然后是一个最大池化层,用于下采样。最后通过一个全连接层将卷积层输出的feature map映射到类别上。其中,输入图片是3通道的,输出类别数为131个。
阅读全文