class GhostModule(nn.Module): def __init__(self, input_channels, output_channels, kernel_size=1, ratio=2): super(GhostModule, self).__init__() self.output_channels = output_channels self.hidden_channels = output_channels // ratio self.primary_conv = nn.Sequential( nn.Conv2d(input_channels, self.hidden_channels, kernel_size, bias=False), nn.BatchNorm2d(self.hidden_channels), nn.ReLU(inplace=True) ) self.cheap_operation = nn.Sequential( nn.Conv2d(self.hidden_channels, self.hidden_channels, kernel_size, groups=self.hidden_channels, bias=False), nn.BatchNorm2d(self.hidden_channels), nn.ReLU(inplace=True) ) self.secondary_conv = nn.Sequential( nn.Conv2d(self.hidden_channels, self.output_channels - self.hidden_channels, kernel_size, bias=False), nn.BatchNorm2d(self.output_channels - self.hidden_channels) ) def forward(self, x): x1 = self.primary_conv(x) x2 = self.cheap_operation(x1) x3 = self.secondary_conv(torch.cat([x1, x2], dim=1)) return torch.cat([x1, x3], dim=1)
时间: 2024-04-27 16:25:31 浏览: 109
这是一个 PyTorch 的神经网络模块,该模块名为 GhostModule。该模块包含三个卷积层:主要卷积层、廉价卷积操作和次要卷积层。其中主要卷积层是一个标准的卷积操作,廉价卷积操作是一种深度可分离卷积,次要卷积层是一个标准的卷积操作。这个模块的目的是在减少计算成本的同时保持模型的准确性。你有没有其他问题呢?
相关问题
import torch import torch.nn as nn class LeNetConvLSTM(nn.Module): def __init__(self, input_size, hidden_size, kernel_size): super(LeNetConvLSTM, self).__init__() # LeNet网络部分 self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5) self.pool1 = nn.MaxPool2d(kernel_size=2) self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5) self.pool2 = nn.MaxPool2d(kernel_size=2) self.fc1 = nn.Linear(in_features=16*5*5, out_features=120) self.fc2 = nn.Linear(in_features=120, out_features=84) # ConvLSTM部分 self.lstm = nn.LSTMCell(input_size, hidden_size) self.hidden_size = hidden_size self.kernel_size = kernel_size self.padding = kernel_size // 2 def forward(self, x): # LeNet网络部分 x = self.pool1(torch.relu(self.conv1(x))) x = self.pool2(torch.relu(self.conv2(x))) x = x.view(-1, 16*5*5) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) # 将输出转换为ConvLSTM所需的格式 batch_size, channels, height, width = x.shape x = x.view(batch_size, channels, height*width) x = x.permute(0, 2, 1) # ConvLSTM部分 hx = torch.zeros(batch_size, self.hidden_size).to(x.device) cx = torch.zeros(batch_size, self.hidden_size).to(x.device) for i in range(height*width): hx, cx = self.lstm(x[:, i, :], (hx, cx)) hx = hx.view(batch_size, self.hidden_size, 1, 1) cx = cx.view(batch_size, self.hidden_size, 1, 1) if i == 0: output = hx else: output = torch.cat((output, hx), dim=1) # 将输出转换为正常的格式 output = output.permute(0, 2, 3, 1) output = output.view(batch_size, height, width, self.hidden_size) return output
这段代码定义了一个名为 LeNetConvLSTM 的 PyTorch 模型,它实现了一个结合了 LeNet 网络和 ConvLSTM 的神经网络。LeNet 网络用于提取输入数据的特征,ConvLSTM 用于处理时间序列数据。在 forward 方法中,该模型首先通过 LeNet 网络处理输入数据,然后将输出转换为 ConvLSTM 所需的格式,并对每个时间步运行一个 LSTM 单元,最后将 LSTM 单元的输出转换为正常的格式。
class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.residual_layer = self.make_layer(Conv_ReLU_Block, 18)#调用Conv_ReLU_Block,重复18个Conv_ReLU_Block模块 self.input = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)#通道层放大 self.output = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=3, stride=1, padding=1, bias=False)#通道层缩小 self.relu = nn.ReLU(inplace=True)#19-22初始化网络层 for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, sqrt(2. / n))
这段代码是用 PyTorch 搭建的一个卷积神经网络模型,其名称为 Net。该模型包含了一个残差层(residual_layer),其中使用了 Conv_ReLU_Block 模块,该模块被重复调用了 18 次。此外,该模型还包含了一个输入层(input),一个输出层(output)和一个 ReLU 激活函数层(relu)。这些层被初始化为 nn.Conv2d、nn.ReLU 和 nn.ReLU(inplace=True) 类型。最后,该代码还对网络中的所有卷积层进行了权重初始化,使用的是均值为 0,方差为 2/n 的正态分布。
阅读全文