class MotionEncoder_STGCN(nn.Module): def __init__(self): super(MotionEncoder_STGCN, self).__init__() self.graph_args = {} self.st_gcn = ST_GCN(in_channels=2, out_channels=32, graph_args=self.graph_args, edge_importance_weighting=True, mode='M2S') self.fc = nn.Sequential(nn.Conv1d(32 * 13, 64, kernel_size=1), nn.BatchNorm1d(64)) def forward(self, input): input = input.transpose(1, 2) input = input.transpose(1, 3) input = input.unsqueeze(4) output = self.st_gcn(input) output = output.transpose(1, 2) output = torch.flatten(output, start_dim=2) output = self.fc(output.transpose(1, 2)).transpose(1, 2) return output def features(self, input): input = input.transpose(1, 2) input = input.transpose(1, 3) input = input.unsqueeze(4) output = self.st_gcn(input) output = output.transpose(1, 2) output = torch.flatten(output, start_dim=2) output = self.fc(output.transpose(1, 2)).transpose(1, 2) features = self.st_gcn.extract_feature(input) features.append(output.transpose(1, 2)) return features
时间: 2023-04-01 10:03:26 浏览: 138
这是一个 Python 代码段,用于定义一个名为 MotionEncoder_STGCN 的类,该类包含一个前向传递函数和一个特征提取函数。它使用 ST_GCN 模型对输入进行处理,并使用卷积神经网络对输出进行处理。我可以回答这个问题。
相关问题
class NormedLinear(nn.Module): def __init__(self, feat_dim, num_classes): super().__init__() self.weight = nn.Parameter(torch.Tensor(feat_dim, num_classes)) self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5) def forward(self, x): return F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0)) class LearnableWeightScalingLinear(nn.Module): def __init__(self, feat_dim, num_classes, use_norm=False): super().__init__() self.classifier = NormedLinear(feat_dim, num_classes) if use_norm else nn.Linear(feat_dim, num_classes) self.learned_norm = nn.Parameter(torch.ones(1, num_classes)) def forward(self, x): return self.classifier(x) * self.learned_norm class DisAlignLinear(nn.Module): def __init__(self, feat_dim, num_classes, use_norm=False): super().__init__() self.classifier = NormedLinear(feat_dim, num_classes) if use_norm else nn.Linear(feat_dim, num_classes) self.learned_magnitude = nn.Parameter(torch.ones(1, num_classes)) self.learned_margin = nn.Parameter(torch.zeros(1, num_classes)) self.confidence_layer = nn.Linear(feat_dim, 1) torch.nn.init.constant_(self.confidence_layer.weight, 0.1) def forward(self, x): output = self.classifier(x) confidence = self.confidence_layer(x).sigmoid() return (1 + confidence * self.learned_magnitude) * output + confidence * self.learned_margin class MLP_ConClassfier(nn.Module): def __init__(self): super(MLP_ConClassfier, self).__init__() self.num_inputs, self.num_hiddens_1, self.num_hiddens_2, self.num_hiddens_3, self.num_outputs \ = 41, 512, 128, 32, 5 self.num_proj_hidden = 32 self.mlp_conclassfier = nn.Sequential( nn.Linear(self.num_inputs, self.num_hiddens_1), nn.ReLU(), nn.Linear(self.num_hiddens_1, self.num_hiddens_2), nn.ReLU(), nn.Linear(self.num_hiddens_2, self.num_hiddens_3), ) self.fc1 = torch.nn.Linear(self.num_hiddens_3, self.num_proj_hidden) self.fc2 = torch.nn.Linear(self.num_proj_hidden, self.num_hiddens_3) self.linearclassfier = nn.Linear(self.num_hiddens_3, self.num_outputs) self.NormedLinearclassfier = NormedLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs) self.DisAlignLinearclassfier = DisAlignLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs, use_norm=True) self.LearnableWeightScalingLinearclassfier = LearnableWeightScalingLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs, use_norm=True)
这段代码定义了一个名为MLP_ConClassfier的神经网络模型,它包含了多个子模块,包括三个不同的分类器:NormedLinearclassfier、DisAlignLinearclassfier和LearnableWeightScalingLinearclassfier。这些分类器都是基于输入特征进行分类的,并且使用不同的方法来实现分类功能。此外,该模型还包含了一个MLP网络,用于将输入特征映射到更高维的特征空间中。该模型的输入特征维度为41,输出类别数为5。
class R_NN(nn.Module): def __init__(self, in_dim, n_class): super(R_NN, self).__init__() self.logstic = nn.Linear(in_dim, n_class) self.predict=nn.Sigmoid() def forward(self, x): out = self.logstic(x) out = out.squeeze(1) #降维 return out
这段代码是一个定制化的PyTorch神经网络模块。该模块名为R_NN,有两个输入参数:in_dim表示输入数据的维度,n_class表示分类的数量。在初始化函数中,调用了super()函数来获得父类nn.Module的属性和方法,然后定义了一个线性层(logstic)和一个Sigmoid层(predict)。在前向传播函数forward()中,对输入数据x进行线性变换,再使用squeeze()函数将一维的输出向量压缩为一个标量。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)