class MLP(nn.Module): def __init__( self, input_size: int, output_size: int, n_hidden: int, classes: int, dropout: float, normalize_before: bool = True ): super(MLP, self).__init__() self.input_size = input_size self.dropout = dropout self.n_hidden = n_hidden self.classes = classes self.output_size = output_size self.normalize_before = normalize_before self.model = nn.Sequential( nn.Linear(self.input_size, n_hidden), nn.Dropout(self.dropout), nn.ReLU(), nn.Linear(n_hidden, self.output_size), nn.Dropout(self.dropout), nn.ReLU(), ) self.after_norm = torch.nn.LayerNorm(self.input_size, eps=1e-5) self.fc = nn.Sequential( nn.Dropout(self.dropout), nn.Linear(self.input_size, self.classes) ) self.output_layer = nn.Linear(self.output_size, self.classes) def forward(self, x): self.device = torch.device('cuda') # x = self.model(x) if self.normalize_before: x = self.after_norm(x) batch_size, length, dimensions = x.size(0), x.size(1), x.size(2) output = self.model(x) return output.mean(dim=1) class LabelSmoothingLoss(nn.Module): def __init__(self, size: int, smoothing: float, ): super(LabelSmoothingLoss, self).__init__() self.size = size self.criterion = nn.KLDivLoss(reduction="none") self.confidence = 1.0 - smoothing self.smoothing = smoothing def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor: batch_size = x.size(0) if self.smoothing == None: return nn.CrossEntropyLoss()(x, target.view(-1)) true_dist = torch.zeros_like(x) true_dist.fill_(self.smoothing / (self.size - 1)) true_dist.scatter_(1, target.view(-1).unsqueeze(1), self.confidence) kl = self.criterion(torch.log_softmax(x, dim=1), true_dist) return kl.sum() / batch_size
时间: 2024-02-14 14:19:09 浏览: 181
这段代码中定义了一个 MLP 模型以及一个 LabelSmoothingLoss 损失函数。MLP 模型包含了多个线性层和 ReLU 激活函数,以及一个 LayerNorm 层和一个 dropout 层。LabelSmoothingLoss 损失函数主要用于解决分类问题中的过拟合问题,它通过对真实标签进行平滑处理来减少模型对噪声的敏感度。这段代码的 forward 方法实现了 MLP 模型的前向传播,以及 LabelSmoothingLoss 的计算。其中,true_dist 是经过平滑处理后的真实标签分布,kl 是计算 KL 散度的结果,最终返回的是 kl 的平均值。
相关问题
self.SA_modules.append( nn.Sequential( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ), SelfAttention(channel_out) ) )这是SA_modules的定义代码块,而 for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features)是SA_modules的调用代码块,运行时程序报错提示: File "/root/autodl-tmp/project/tools/../lib/net/pointnet2_msg.py", line 154, in forward li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) TypeError: forward() takes 2 positional arguments but 3 were given,我想我必须得传入三个参数给SA_modules,第三个参数应该是channel_out,我该如何解决该问题,请给出详细的代码
根据错误提示,`forward()` 方法只接受两个位置参数,但是在调用 `self.SA_modules[i]` 方法时,您传递了三个参数。根据您提供的代码,这个错误来自于 `SelfAttention(channel_out)` 这一行。因此,可以尝试在 `SelfAttention` 类的 `forward()` 方法中添加一个额外的参数。
以下是一个可能的解决方案:
```
class SelfAttention(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv1 = nn.Conv1d(in_channels, out_channels, 1)
self.conv2 = nn.Conv1d(out_channels, out_channels, 1)
self.conv3 = nn.Conv1d(out_channels, out_channels, 1)
self.softmax = nn.Softmax(dim=-1)
self.bn = nn.BatchNorm1d(out_channels)
def forward(self, xyz, features, channel_out):
"""
:param xyz: (B, N, 3)
:param features: (B, C, N)
:param channel_out: (int) number of output channels
:return: updated features
"""
B, C, N = features.size()
xyz = xyz.permute(0, 2, 1) # (B, 3, N)
q = self.conv1(features) # (B, channel_out, N)
k = self.conv2(features) # (B, channel_out, N)
v = self.conv3(features) # (B, channel_out, N)
attn = torch.bmm(k.permute(0, 2, 1), q) # (B, N, N)
attn = self.softmax(attn)
features = torch.bmm(v, attn.permute(0, 2, 1)) # (B, C, N)
features = self.bn(features)
return features
```
然后,在 `PointnetSAModuleMSG` 中,您需要将 `SelfAttention` 的 `forward()` 方法的第三个参数设置为 `channel_out`,如下所示:
```
class PointnetSAModuleMSG(nn.Module):
def __init__(self, npoint, radii, nsamples, mlps, use_xyz=True, bn=True):
super().__init__()
self.npoint = npoint
self.radii = radii
self.nsamples = nsamples
self.use_xyz = use_xyz
self.bn = bn
self.mlp_convs = nn.ModuleList()
self.sa_modules = nn.ModuleList()
last_channel = mlps[-1]
for out_channel in mlps:
self.mlp_convs.append(nn.Conv1d(last_channel, out_channel, 1))
last_channel = out_channel
for i in range(len(radii)):
sa_module = nn.Sequential(
PointnetSAModule(npoint[i], radii[i], nsamples[i], mlps[:-1], use_xyz, bn),
SelfAttention(mlps[-1], mlps[-1]) # <-- add this line
)
self.sa_modules.append(sa_module)
def forward(self, xyz, features):
new_xyz, new_features = sample_and_group_all(xyz, features) # (B, 1, 3), (B, C, 1)
l_xyz, l_features = [new_xyz], [new_features]
for i in range(len(self.radii)):
li_xyz, li_features = sample_and_group_radius(xyz, features, self.npoint[i], self.radii[i], self.nsamples[i], self.use_xyz) # (B, npoint[i], 3), (B, C, npoint[i], nsamples[i])
li_features = li_features.view(li_features.size(0), li_features.size(1), -1) # (B, C, npoint[i] * nsamples[i])
li_features = self.mlp_convs[i](li_features) # (B, mlps[i], npoint[i] * nsamples[i])
li_xyz, li_features = self.sa_modules[i](li_xyz, li_features, mlps[-1]) # <-- add mlps[-1] here
l_xyz.append(li_xyz)
l_features.append(li_features)
return l_xyz, l_features
```
这应该可以解决您遇到的问题。
你现在利用pytorch定义了两个神经网络,一个是3层用全连接层构造成的MLP,还有一个是图注意力网络。两个输出均是(16,307,12)。你现在需要把这两个神经网络作为VAE的两个编码器,将它们的输出拼接后计算隐变量,然后解码生成新的交通数据集。这个pytorch应该怎么写,请给我一个比较完整的pytorch代码。原来的数据集形状为(16992,307,12,3)的数据集,其中,16992是时间段数,307是传感器节点个数,12是历史步长,3是特征维度。第一个特征维度是速度,第二个特征维度是根据邻接矩阵产生的度特征,第三个特征维度是星期。现在按照batch_size=16送入模型得到的输出均是(16,307,12),并最好告诉我每一行在做什么,相应输出维度应该是什么。两个class均不想删除,那decoder怎么写,两个输入参数是不一样的,例如MLP的相关参数是input_dim = 36,hidden_dim = 64,output_dim = 12,history_length=12,GAT的相关参数是num_heads = 8,in_dim = 3,hidden_dim = 64,out_dim = 36,输出维度是相同的。最后,请随机生成形状为(16992,307,12,3)的数据集,按批次送入模型,让我自行看看模型的效果
好的,以下是一个比较完整的PyTorch代码,实现了VAE的编码器和解码器部分,其中编码器部分使用了两个神经网络,分别是MLP和GAT网络:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
# 定义MLP网络
class MLP(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, history_length):
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_dim * history_length, hidden_dim)
self.fc21 = nn.Linear(hidden_dim, output_dim)
self.fc22 = nn.Linear(hidden_dim, output_dim)
def encode(self, x):
x = x.view(x.size(0), -1)
h1 = F.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1)
def forward(self, x):
mu, logvar = self.encode(x)
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu), mu, logvar
# 定义GAT网络
class GAT(nn.Module):
def __init__(self, num_heads, in_dim, hidden_dim, out_dim):
super(GAT, self).__init__()
self.num_heads = num_heads
self.fc = nn.Linear(in_dim, hidden_dim)
self.attn_fc = nn.Linear(hidden_dim, num_heads * out_dim)
def forward(self, x, adj):
x = self.fc(x)
N = x.size()[1]
x = x.view(-1, N, self.num_heads, int(x.size()[2] / self.num_heads))
x = x.permute(0, 2, 1, 3)
a = self.attn_fc(x)
a = a.view(-1, self.num_heads, N, N)
attn = F.softmax(a, dim=-1)
h = torch.matmul(attn, x)
h = h.permute(0, 2, 1, 3).contiguous()
h = h.view(-1, N, int(x.size()[2]))
return h
# 定义VAE模型
class VAE(nn.Module):
def __init__(self, mlp_input_dim, mlp_hidden_dim, mlp_output_dim,
mlp_history_length, gat_num_heads, gat_in_dim,
gat_hidden_dim, gat_out_dim):
super(VAE, self).__init__()
self.mlp = MLP(mlp_input_dim, mlp_hidden_dim, mlp_output_dim, mlp_history_length)
self.gat = GAT(gat_num_heads, gat_in_dim, gat_hidden_dim, gat_out_dim)
self.fc1 = nn.Linear(mlp_output_dim + gat_out_dim, 256)
self.fc2 = nn.Linear(256, 307 * 12 * 3)
def decode(self, z):
h = F.relu(self.fc1(z))
return torch.sigmoid(self.fc2(h))
def forward(self, x, adj):
z, mu, logvar = self.mlp(x)
gat_out = self.gat(x, adj)
z = torch.cat([z, gat_out], dim=-1)
return self.decode(z), mu, logvar
# 定义数据集
class RandomDataset(Dataset):
def __init__(self, shape):
self.shape = shape
def __getitem__(self, index):
return torch.randn(self.shape), torch.randn(self.shape)
def __len__(self):
return 1000
# 随机生成数据集
dataset = RandomDataset((16, 307, 12, 3))
dataloader = DataLoader(dataset, batch_size=16, shuffle=True)
# 初始化模型
mlp_input_dim = 36
mlp_hidden_dim = 64
mlp_output_dim = 12
mlp_history_length = 12
gat_num_heads = 8
gat_in_dim = 3
gat_hidden_dim = 64
gat_out_dim = 36
vae = VAE(mlp_input_dim, mlp_hidden_dim, mlp_output_dim, mlp_history_length,
gat_num_heads, gat_in_dim, gat_hidden_dim, gat_out_dim)
# 训练模型
optimizer = torch.optim.Adam(vae.parameters(), lr=1e-4)
def loss_function(recon_x, x, mu, logvar):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 307 * 12 * 3), reduction='sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
num_epochs = 10
for epoch in range(num_epochs):
for i, data in enumerate(dataloader):
x, adj = data
optimizer.zero_grad()
recon_x, mu, logvar = vae(x, adj)
loss = loss_function(recon_x, x, mu, logvar)
loss.backward()
optimizer.step()
if i % 10 == 0:
print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f'
% (epoch+1, num_epochs, i+1, len(dataset)//16, loss.item()))
# 测试模型
test_data = torch.randn(16992, 307, 12, 3)
test_adj = torch.randn(16992, 307, 307)
test_result = []
batch_size = 16
num_batches = test_data.shape[0] // batch_size
for i in range(num_batches):
x = test_data[i*batch_size:(i+1)*batch_size]
adj = test_adj[i*batch_size:(i+1)*batch_size]
recon_x, _, _ = vae(x, adj)
test_result.append(recon_x.detach().numpy())
test_result = np.concatenate(test_result, axis=0)
print(test_result.shape)
```
在上面的代码中,MLP是一个包含三个全连接层的神经网络,GAT是一个基于图注意力机制的神经网络。VAE模型将这两个神经网络作为两个编码器,将它们的输出拼接后计算隐变量,然后解码生成新的交通数据集。输入数据集的形状为(16992,307,12,3),其中,16992是时间段数,307是传感器节点个数,12是历史步长,3是特征维度。第一个特征维度是速度,第二个特征维度是根据邻接矩阵产生的度特征,第三个特征维度是星期。按批次送入模型时,每个batch的大小为16。
在训练过程中,我们使用了随机生成的数据集进行训练,并且使用Adam优化器进行优化。在测试过程中,我们随机生成了一组符合原始数据集形状的数据集,并按批次送入模型生成新的交通数据集。
阅读全文