class Attention_block(nn.Module): def __init__(self, F_g, F_l, F_int): super(Attention_block, self).__init__() self.W_g = nn.Sequential( nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(F_int) )

时间: 2024-04-12 09:33:15 浏览: 13
这段代码定义了一个名为Attention_block的PyTorch模块。它包含三个输入参数:F_g,F_l和F_int。其中,F_g表示输入特征图的通道数,F_l表示低层特征图的通道数,F_int表示中间层特征图的通道数。 在初始化函数中,首先使用nn.Sequential定义了self.W_g,它包含两个操作:一个1x1的卷积层和一个批归一化层。这个卷积层将输入特征图的通道数从F_g变换为F_int,以便后续的注意力计算。 注意:这里只展示了部分代码,还有其他的模块和函数需要补充完整。
相关问题

class AttU_Net(nn.Module): def __init__(self, img_ch=3, output_ch=1): super(AttU_Net, self).__init__() self.Maxpool = nn.MaxPool2d(kernel_size=2, stride=2) self.Conv1 = conv_block(ch_in=img_ch, ch_out=64) self.Conv2 = conv_block(ch_in=64, ch_out=128) self.Conv3 = conv_block(ch_in=128, ch_out=256) self.Conv4 = conv_block(ch_in=256, ch_out=512) self.Conv5 = conv_block(ch_in=512, ch_out=1024) self.Up5 = up_conv(ch_in=1024, ch_out=512) self.Att5 = Attention_block(F_g=512, F_l=512, F_int=256) self.Up_conv5 = conv_block(ch_in=1024, ch_out=512) self.Up4 = up_conv(ch_in=512, ch_out=256) self.Att4 = Attention_block(F_g=256, F_l=256, F_int=128) self.Up_conv4 = conv_block(ch_in=512, ch_out=256) self.Up3 = up_conv(ch_in=256, ch_out=128) self.Att3 = Attention_block(F_g=128, F_l=128, F_int=64) self.Up_conv3 = conv_block(ch_in=256, ch_out=128) self.Up2 = up_conv(ch_in=128, ch_out=64) self.Att2 = Attention_block(F_g=64, F_l=64, F_int=32) self.Up_conv2 = conv_block(ch_in=128, ch_out=64) self.Conv_1x1 = nn.Conv2d(64, output_ch, kernel_size=1, stride=1, padding=0) self.sigmoid = nn.Sigmoid()

这段代码定义了一个名为AttU_Net的PyTorch模型。它是一个基于U-Net的改进模型,用于图像分割任务。模型的输入通道数为img_ch,输出通道数为output_ch。 在初始化函数中,首先定义了一个MaxPool2d层,用于下采样操作。 接下来,通过conv_block函数定义了五个卷积块(self.Conv1到self.Conv5),每个卷积块包含一个卷积层和批归一化层。 然后,定义了四个上采样操作(self.Up5到self.Up2),每个上采样操作包含一个上采样层和一个卷积块。 在每个上采样操作后,使用Attention_block模块(self.Att5到self.Att2)对特征图进行注意力计算。 最后,通过一个1x1的卷积层(self.Conv_1x1)将通道数变为output_ch,并使用Sigmoid函数进行输出。 这个AttU_Net模型的设计主要是在U-Net的基础上添加了注意力机制,以提升分割性能。

class SqueezeExcitation(nn.Module): """ adaptively recalibrates channel-wise feature responses by explicitly modelling interdependencies between channels. See: https://arxiv.org/abs/1709.01507 """ def __init__(self, channels, reduction=8): super().__init__() reduced = int(math.ceil(channels / reduction)) self.squeeze = nn.Conv2d(channels, reduced, 1) self.excite = nn.Conv2d(reduced, channels, 1) self.relu = nn.ReLU(inplace=True) def forward(self, x): y = F.avg_pool2d(x, x.shape[2:]) y = self.relu(self.squeeze(y)) y = torch.sigmoid(self.excite(y)) return x * y def WithSE(conv_block, reduction=8): def make_block(c_in, c_out, **kwargs): return nn.Sequential( conv_block(c_in, c_out, **kwargs), SqueezeExcitation(c_out, reduction=reduction) ) make_block.__name__ = f"WithSE({conv_block.__name__})" return make_block是什么意思

这段代码定义了一个名为 `SqueezeExcitation` 的自定义模块,用于实现通道注意力机制(Channel Attention)。 具体的实现如下: 1. `SqueezeExcitation` 类继承自 `nn.Module`,表示这是一个 PyTorch 模块。 2. 在 `__init__` 方法中,接收输入通道数 `channels` 和压缩比例 `reduction`(默认为 8)作为参数。 3. 根据压缩比例计算出压缩后的通道数 `reduced`,使用 1x1 的卷积操作将输入通道数压缩为 `reduced`。 4. 再次使用 1x1 的卷积操作将压缩后的通道数恢复到原始通道数。 5. 创建一个 `nn.ReLU(inplace=True)` 层,用于激活函数的应用。 6. 在 `forward` 方法中,执行模块的前向传播逻辑。首先对输入张量进行全局平均池化,得到一个特征图。然后通过 `squeeze` 操作将特征图的通道数压缩为 `reduced`。接着使用 ReLU 激活函数对压缩后的特征图进行非线性变换。最后,通过 `excite` 操作将特征图的通道数恢复到原始通道数,并通过 Sigmoid 激活函数将每个通道的响应限制在 [0, 1] 范围内。最终,将输入张量与通道注意力图相乘,得到加权后的输出。 接下来代码中的 `WithSE` 函数是一个装饰器,用于给卷积块添加通道注意力机制。 具体的实现如下: 1. `WithSE` 函数接收一个卷积块类型 `conv_block` 和压缩比例 `reduction`(默认为 8)作为参数。 2. 定义了一个内部函数 `make_block`,它接收输入通道数 `c_in`、输出通道数 `c_out` 和其他参数,并返回一个包含卷积块和通道注意力模块的序列。 3. 将卷积块和通道注意力模块组合成一个序列,并返回该序列。 总结来说,这段代码定义了一个通道注意力模块 `SqueezeExcitation`,用于动态地调整通道之间的特征响应。并提供了一个装饰器 `WithSE`,通过添加通道注意力模块来增强卷积块的功能。

相关推荐

class ResidualBlock(nn.Module): def init(self, in_channels, out_channels, dilation): super(ResidualBlock, self).init() self.conv = nn.Sequential( nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU(), nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU() ) self.attention = nn.Sequential( nn.Conv1d(out_channels, out_channels, kernel_size=1), nn.Sigmoid() ) self.downsample = nn.Conv1d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else None def forward(self, x): residual = x out = self.conv(x) attention = self.attention(out) out = out * attention if self.downsample: residual = self.downsample(residual) out += residual return out class VMD_TCN(nn.Module): def init(self, input_size, output_size, n_k=1, num_channels=16, dropout=0.2): super(VMD_TCN, self).init() self.input_size = input_size self.nk = n_k if isinstance(num_channels, int): num_channels = [num_channels*(2**i) for i in range(4)] self.layers = nn.ModuleList() self.layers.append(nn.utils.weight_norm(nn.Conv1d(input_size, num_channels[0], kernel_size=1))) for i in range(len(num_channels)): dilation_size = 2 ** i in_channels = num_channels[i-1] if i > 0 else num_channels[0] out_channels = num_channels[i] self.layers.append(ResidualBlock(in_channels, out_channels, dilation_size)) self.pool = nn.AdaptiveMaxPool1d(1) self.fc = nn.Linear(num_channels[-1], output_size) self.w = nn.Sequential(nn.Conv1d(num_channels[-1], num_channels[-1], kernel_size=1), nn.Sigmoid()) # 特征融合 门控系统 # self.fc1 = nn.Linear(output_size * (n_k + 1), output_size) # 全部融合 self.fc1 = nn.Linear(output_size * 2, output_size) # 只选择其中两个融合 self.dropout = nn.Dropout(dropout) # self.weight_fc = nn.Linear(num_channels[-1] * (n_k + 1), n_k + 1) # 置信度系数,对各个结果加权平均 软投票思路 def vmd(self, x): x_imfs = [] signal = np.array(x).flatten() # flatten()必须加上 否则最后一个batch报错size不匹配! u, u_hat, omega = VMD(signal, alpha=512, tau=0, K=self.nk, DC=0, init=1, tol=1e-7) for i in range(u.shape[0]): imf = torch.tensor(u[i], dtype=torch.float32) imf = imf.reshape(-1, 1, self.input_size) x_imfs.append(imf) x_imfs.append(x) return x_imfs def forward(self, x): x_imfs = self.vmd(x) total_out = [] # for data in x_imfs: for data in [x_imfs[0], x_imfs[-1]]: out = data.transpose(1, 2) for layer in self.layers: out = layer(out) out = self.pool(out) # torch.Size([96, 56, 1]) w = self.w(out) out = w * out # torch.Size([96, 56, 1]) out = out.view(out.size(0), -1) out = self.dropout(out) out = self.fc(out) total_out.append(out) total_out = torch.cat(total_out, dim=1) # 考虑w1total_out[0]+ w2total_out[1],在第一维,权重相加得到最终结果,不用cat total_out = self.dropout(total_out) output = self.fc1(total_out) return output优化代码

最新推荐

recommend-type

基于matlab实现的空间调制通信过程,包含信号调制、天线选择等发送过程,以及采用最大似然估计的检测过程 .rar

基于matlab实现的空间调制通信过程,包含信号调制、天线选择等发送过程,以及采用最大似然估计的检测过程。.rar
recommend-type

基于matlab的关于生猪养殖场经营管理的研究.docx

本文档是课题研究的研究报告内含调研以及源码设计以及结果分析
recommend-type

网络作为特征提取器-python源码.zip

网络作为特征提取器-python源码.zip
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

去除字符串s="ab23cde"中的数字,构成一个新的字符串"abcde"。

可以使用正则表达式来匹配并替换字符串中的数字: ```python import re s = "ab23cde" new_s = re.sub(r'\d+', '', s) print(new_s) # 输出:abcde ``` 其中,`\d` 表示匹配数字,`+` 表示匹配一个或多个数字,`re.sub()` 函数用来替换匹配到的数字为空字符串。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这