densenet-attention代码实现
时间: 2023-08-09 12:09:53 浏览: 111
以下是使用PyTorch实现的DenseNet-Attention网络的代码:
```python
import torch
import torch.nn as nn
class Bottleneck(nn.Module):
def __init__(self, in_channels, growth_rate):
super(Bottleneck, self).__init__()
self.bn1 = nn.BatchNorm2d(in_channels)
self.conv1 = nn.Conv2d(in_channels, 4*growth_rate, kernel_size=1, bias=False)
self.bn2 = nn.BatchNorm2d(4*growth_rate)
self.conv2 = nn.Conv2d(4*growth_rate, growth_rate, kernel_size=3, padding=1, bias=False)
def forward(self, x):
out = self.conv1(torch.relu(self.bn1(x)))
out = self.conv2(torch.relu(self.bn2(out)))
out = torch.cat((out, x), dim=1)
return out
class DenseNet(nn.Module):
def __init__(self, block, nblocks, growth_rate=12, reduction=0.5, num_classes=10):
super(DenseNet, self).__init__()
self.growth_rate = growth_rate
num_planes = 2*growth_rate
self.conv1 = nn.Conv2d(3, num_planes, kernel_size=3, padding=1, bias=False)
self.dense1 = self._make_dense_layers(block, num_planes, nblocks[0])
num_planes += nblocks[0]*growth_rate
out_planes = int(reduction*num_planes)
self.trans1 = Transition(num_planes, out_planes)
num_planes = out_planes
self.dense2 = self._make_dense_layers(block, num_planes, nblocks[1])
num_planes += nblocks[1]*growth_rate
out_planes = int(reduction*num_planes)
self.trans2 = Transition(num_planes, out_planes)
num_planes = out_planes
self.dense3 = self._make_dense_layers(block, num_planes, nblocks[2])
num_planes += nblocks[2]*growth_rate
out_planes = int(reduction*num_planes)
self.trans3 = Transition(num_planes, out_planes)
num_planes = out_planes
self.dense4 = self._make_dense_layers(block, num_planes, nblocks[3])
num_planes += nblocks[3]*growth_rate
self.bn = nn.BatchNorm2d(num_planes)
self.linear = nn.Linear(num_planes, num_classes)
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
def _make_dense_layers(self, block, in_planes, nblock):
layers = []
for i in range(nblock):
layers.append(block(in_planes, self.growth_rate))
in_planes += self.growth_rate
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.trans1(self.dense1(out))
out = self.trans2(self.dense2(out))
out = self.trans3(self.dense3(out))
out = self.dense4(out)
out = self.avgpool(torch.relu(self.bn(out)))
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
class Transition(nn.Module):
def __init__(self, in_planes, out_planes):
super(Transition, self).__init__()
self.bn = nn.BatchNorm2d(in_planes)
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False)
def forward(self, x):
out = self.conv(torch.relu(self.bn(x)))
out = nn.functional.avg_pool2d(out, 2)
return out
class DenseNetAttention(nn.Module):
def __init__(self, block, nblocks, growth_rate=12, reduction=0.5, num_classes=10):
super(DenseNetAttention, self).__init__()
self.growth_rate = growth_rate
num_planes = 2*growth_rate
self.conv1 = nn.Conv2d(3, num_planes, kernel_size=3, padding=1, bias=False)
self.dense1 = self._make_dense_layers(block, num_planes, nblocks[0])
num_planes += nblocks[0]*growth_rate
out_planes = int(reduction*num_planes)
self.trans1 = Transition(num_planes, out_planes)
num_planes = out_planes
self.dense2 = self._make_dense_layers(block, num_planes, nblocks[1])
num_planes += nblocks[1]*growth_rate
out_planes = int(reduction*num_planes)
self.trans2 = Transition(num_planes, out_planes)
num_planes = out_planes
self.dense3 = self._make_dense_layers(block, num_planes, nblocks[2])
num_planes += nblocks[2]*growth_rate
out_planes = int(reduction*num_planes)
self.trans3 = Transition(num_planes, out_planes)
num_planes = out_planes
self.dense4 = self._make_dense_layers(block, num_planes, nblocks[3])
num_planes += nblocks[3]*growth_rate
self.bn = nn.BatchNorm2d(num_planes)
self.global_avgpool = nn.AdaptiveAvgPool2d((1,1))
self.fc1 = nn.Linear(num_planes, num_classes)
self.fc2 = nn.Linear(num_planes, num_classes)
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
def _make_dense_layers(self, block, in_planes, nblock):
layers = []
for i in range(nblock):
layers.append(block(in_planes, self.growth_rate))
in_planes += self.growth_rate
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.trans1(self.dense1(out))
out = self.trans2(self.dense2(out))
out = self.trans3(self.dense3(out))
out = self.dense4(out)
attention = self.global_avgpool(torch.relu(self.bn(out)))
attention = attention.view(attention.size(0), -1)
attention = self.fc1(attention)
attention = torch.sigmoid(attention)
out = out * attention.view(-1, 1024, 1, 1)
out = self.avgpool(torch.relu(self.bn(out)))
out = out.view(out.size(0), -1)
out = self.fc2(out)
return out
```
在这个实现中,我们首先定义了一个Bottleneck模块,它是DenseNet的基本构建块。然后我们定义了DenseNet模型,其中包含多个Bottleneck模块和过渡层。最后,我们定义了DenseNetAttention模型,它在DenseNet模型的基础上添加了注意力机制。
在DenseNetAttention模型中,我们首先计算全局平均池化,然后通过一个全连接层得到注意力分数。我们将注意力分数应用于特征图中的每个通道,以产生加权特征图。最后,我们通过全局平均池化和一个全连接层来预测类别。
阅读全文