DenseNet-Attention实现四分类代码
时间: 2023-12-24 18:04:53 浏览: 84
基于attention+ gru文本分类代码
5星 · 资源好评率100%
以下是使用DenseNet-Attention实现四分类的代码范例。这里使用的是PyTorch框架。
```python
import torch
import torch.nn as nn
from torchvision.models import densenet121
class DenseNet_Attention(nn.Module):
def __init__(self, num_classes=4):
super(DenseNet_Attention, self).__init__()
self.densenet = densenet121(pretrained=True)
num_ftrs = self.densenet.classifier.in_features
self.densenet.classifier = nn.Linear(num_ftrs, num_classes)
self.attention = nn.Sequential(
nn.Conv2d(in_channels=1024, out_channels=64, kernel_size=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=64, out_channels=1, kernel_size=1),
nn.Sigmoid()
)
def forward(self, x):
features = self.densenet.features(x)
out = self.densenet.avgpool(features)
out = torch.flatten(out, 1)
out = self.densenet.classifier(out)
# Attention Mechanism
attention_weights = self.attention(features)
out = out * attention_weights
out = torch.sum(out, dim=(2,3)) / torch.sum(attention_weights, dim=(2,3))
return out
```
这里使用了DenseNet-121网络作为基础模型,并添加了一个注意力机制来提高模型的性能。注意力机制的实现是一个简单的卷积神经网络,其输出的权重将与分类器的输出相乘,以获得最终的分类结果。模型的输出是一个四元组,每个元素对应一个类别的概率。
阅读全文