import torch from torch import nn import d2l net = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), nn.Flatten(), nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 10) ) X = torch.randn((1, 3, 32, 32), dtype=torch.float32) for layer in net: X = layer(X) print(layer.__class__.__name__, 'output shape:\t', X.shape) batch_size = 64 train_iter, test_iter = d2l.load_data_cifar10(batch_size, resize=32) lr, num_epochs = 0.01, 100 d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu()),如何修改代码,提高test acc的准确率
时间: 2023-08-28 12:06:43 浏览: 130
有多种方法可以尝试提高测试准确率,以下是一些常用的方法:
1. 数据增强:可以通过随机裁剪、水平反转、色彩抖动等方式增加训练数据的多样性,从而提高模型的泛化性能。
2. 学习率调整:可以在训练过程中动态调整学习率,例如使用学习率衰减或者余弦退火等策略,使模型更加稳定地收敛。
3. 正则化:可以通过L1、L2正则化、Dropout等方式减少过拟合,提高模型的泛化性能。
4. 模型结构调整:可以增加或减少卷积层、全连接层的数量,改变卷积核的大小等,来调整模型的复杂度和层次结构,从而提高模型的性能。
针对当前的代码,可以考虑以下几个方面来提高测试准确率:
1. 增加数据增强的方式,例如随机裁剪、水平反转、色彩抖动等。
2. 调整学习率的策略,例如使用学习率衰减或者余弦退火等。
3. 增加正则化的方式,例如L2正则化或Dropout等。
4. 尝试调整网络结构,例如增加卷积层或全连接层的数量,改变卷积核的大小等。
相关问题
import torch.nn as nn num_classes = 131 class FruitsClassificationModel(nn.Module): def __init__(self): super(FruitsClassificationModel, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=32), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer2 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=64), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer3 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=128), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.fc = nn.Linear(in_features=18432, out_features=num_classes)
这段代码定义了一个卷积神经网络模型,用于水果图片的分类任务。该模型包含三个卷积层和一个全连接层,其中每个卷积层后面都跟着一个BatchNorm层和ReLU激活函数,然后是一个最大池化层,用于下采样。最后通过一个全连接层将卷积层输出的feature map映射到类别上。其中,输入图片是3通道的,输出类别数为131个。
def __init__(self): super().__init__() self._initial = nn.Sequential( nn.Conv2d(3, 32, kernel_size=9, stride=1, padding=4, padding_mode='reflect'), nn.InstanceNorm2d(32, affine=True), nn.ReLU(inplace=True), ) self._down_blocks = nn.Sequential( DownBlock(32, 64, kernel_size=3), DownBlock(64, 128, kernel_size=3), ) self._residual_blocks = nn.Sequential( *[ResidualBlock(128, kernel_size=3) for _ in range(5)] ) self._up_blocks = nn.Sequential( UpBlock(128, 64, kernel_size=3), UpBlock(64, 32, kernel_size=3), ) self._final = nn.Conv2d(32, 3, kernel_size=9, stride=1, padding=4, padding_mode='reflect') def forward(self, x: Tensor) -> Tensor: x = self._initial(x) x = self._down_blocks(x) x = self._residual_blocks(x) x = self._up_blocks(x) x = self._final(x) x = torch.sigmoid(x) return x
这段代码是一个基于深度学习的图像处理模型,使用了卷积神经网络和残差网络来实现图像的去噪和修复。其中包含了初始卷积层、下采样卷积层、残差块和上采样卷积层,以及最终的卷积层用于输出修复后的图像。在前向传播时,输入图像经过多层卷积和非线性变换后得到修复后的图像。最后通过 sigmoid 函数将像素值限制在 0~1 范围内。
阅读全文