python 局部线性最小二乘回归拟合

时间: 2024-08-12 20:03:57 浏览: 33
局部线性最小二乘回归(Local Linear Regression,LLR),也称为局部多项式回归,是一种统计学方法,用于估计非线性数据集中的点的值。它不是直接拟合一条全局直线,而是通过每个数据点附近的子集构建一条线性模型。这种方法假设在每个观察点附近的数据分布近似平坦,所以线性模型能够提供较好的预测。 在Python中,可以使用`statsmodels`库中的`Lowess`函数来实现局部线性回归。`Lowess`是“Locally Weighted Scatterplot Smoothing”的缩写,它会根据每个观测值的邻域权重来计算回归曲线。下面是一个简单的例子: ```python from statsmodels.nonparametric.smoothers_lowess import lowess # 假设你有一个二维数组x_y_data,其中第一列是自变量x,第二列是因变量y x = x_y_data[:, 0] y = x_y_data[:, 1] # 使用lowess函数,设置alpha参数(平滑度,范围从0到1,默认为0.66) fitted_values = lowess(y, x, frac=alpha) # fitted_values现在包含了每个x值对应的拟合y值 ```
相关问题

python非线性最小二乘拟合

在 Python 中,可以使用 SciPy 库中的 optimize 模块来进行非线性最小二乘拟合。具体步骤如下: 1. 导入所需的库: ```python import numpy as np from scipy.optimize import curve_fit ``` 2. 定义被拟合的函数: ```python def func(x, a, b, c): return a * np.exp(-b * x) + c ``` 这里的 func 函数是一个带有三个参数的指数函数。 3. 生成模拟数据: ```python xdata = np.linspace(0, 4, 50) y = func(xdata, 2.5, 1.3, 0.5) ydata = y + 0.2 * np.random.normal(size=len(xdata)) ``` 这里的 xdata 是在 [0, 4] 区间内均匀分布的 50 个数据点,y 是根据 func 函数计算得到的理论值,ydata 是在理论值的基础上加上一些随机噪声得到的实际值。 4. 调用 curve_fit 函数进行拟合: ```python popt, pcov = curve_fit(func, xdata, ydata) ``` 这里的 popt 是一个包含三个拟合参数的数组,pcov 是协方差矩阵。 5. 绘制拟合结果: ```python import matplotlib.pyplot as plt plt.plot(xdata, ydata, 'b-', label='data') plt.plot(xdata, func(xdata, *popt), 'r-', label='fit') plt.legend() plt.show() ``` 这里使用 matplotlib 库来绘制拟合结果,其中 `func(xdata, *popt)` 表示用拟合得到的参数 popt 对函数进行计算得到的拟合曲线。

python多元非线性最小二乘拟合代码

以下是一个使用Python进行多元非线性最小二乘拟合的示例代码: ```python import numpy as np from scipy.optimize import least_squares # 定义目标函数 def func(x, params): a, b, c = params return a * x**2 + b * x + c # 定义残差函数 def residual(params, x, y): return func(x, params) - y # 输入数据 x = np.array([1, 2, 3, 4, 5]) y = np.array([2.1, 3.9, 6.2, 8.8, 11.9]) # 初始化参数的初始值 params0 = np.array([1, 1, 1]) # 使用最小二乘法进行拟合 result = least_squares(residual, params0, args=(x, y)) # 输出拟合结果 print("拟合参数:", result.x) # 绘制拟合曲线 import matplotlib.pyplot as plt plt.scatter(x, y, label='Data') plt.plot(x, func(x, result.x), 'r', label='Fit') plt.legend() plt.show() ``` 该代码使用了`numpy`库进行数值计算和数组操作,使用了`scipy.optimize.least_squares`函数进行最小二乘拟合。首先,定义了目标函数`func`,该函数根据给定的参数计算拟合曲线的值。然后,定义了残差函数`residual`,该函数计算拟合曲线与实际数据之间的残差。接下来,输入了实际数据`x`和`y`,以及参数的初始值`params0`。最后,使用`least_squares`函数进行拟合,并输出拟合结果。同时,使用`matplotlib.pyplot`库绘制了拟合曲线和实际数据的散点图。

相关推荐

最新推荐

recommend-type

python 线性回归分析模型检验标准--拟合优度详解

在本篇中,我们将深入探讨线性回归模型的一个关键检验标准——拟合优度(Goodness of Fit),以及如何通过Python进行计算。 拟合优度,也称为判定系数 \( R^2 \),是衡量线性回归模型对数据拟合程度的重要指标。它...
recommend-type

8种用Python实现线性回归的方法对比详解

提供了线性方程组的最小二乘解,适合一元或多元线性回归。需手动添加截距项,通过矩阵运算直接求解系数和残差,速度快且直观。 5. **Statsmodels.OLS()**: Statsmodels库中的函数,提供了更全面的统计模型估计,...
recommend-type

关于多元线性回归分析——Python&SPSS

在这个案例中,我们关注的是如何使用Python和SPSS进行多元线性回归分析。数据集`Folds5x2_pp.csv`包含了五个变量:AT(温度),V(压力),AP(湿度),RH(压强)和PE(输出电力)。目标是找到一个线性模型,该模型...
recommend-type

Python中实现最小二乘法思路及实现代码

4. **使用最小二乘法库**:Python的`scipy.optimize.leastsq`函数用于执行最小二乘拟合。这个函数需要输入初始参数猜测值p0(在这里是[1, 20]),以及误差函数和数据点。它会返回一个元组,包含最佳参数估计和误差...
recommend-type

李兴华Java基础教程:从入门到精通

"MLDN 李兴华 java 基础笔记" 这篇笔记主要涵盖了Java的基础知识,由知名讲师李兴华讲解。Java是一门广泛使用的编程语言,它的起源可以追溯到1991年的Green项目,最初命名为Oak,后来发展为Java,并在1995年推出了第一个版本JAVA1.0。随着时间的推移,Java经历了多次更新,如JDK1.2,以及在2005年的J2SE、J2ME、J2EE的命名变更。 Java的核心特性包括其面向对象的编程范式,这使得程序员能够以类和对象的方式来模拟现实世界中的实体和行为。此外,Java的另一个显著特点是其跨平台能力,即“一次编写,到处运行”,这得益于Java虚拟机(JVM)。JVM允许Java代码在任何安装了相应JVM的平台上运行,无需重新编译。Java的简单性和易读性也是它广受欢迎的原因之一。 JDK(Java Development Kit)是Java开发环境的基础,包含了编译器、调试器和其他工具,使得开发者能够编写、编译和运行Java程序。在学习Java基础时,首先要理解并配置JDK环境。笔记强调了实践的重要性,指出学习Java不仅需要理解基本语法和结构,还需要通过实际编写代码来培养面向对象的思维模式。 面向对象编程(OOP)是Java的核心,包括封装、继承和多态等概念。封装使得数据和操作数据的方法结合在一起,保护数据不被外部随意访问;继承允许创建新的类来扩展已存在的类,实现代码重用;多态则允许不同类型的对象对同一消息作出不同的响应,增强了程序的灵活性。 Java的基础部分包括但不限于变量、数据类型、控制结构(如条件语句和循环)、方法定义和调用、数组、类和对象的创建等。这些基础知识构成了编写任何Java程序的基础。 此外,笔记还提到了Java在早期的互联网应用中的角色,如通过HotJava浏览器技术展示Java applet,以及随着技术发展衍生出的J2SE(Java Standard Edition)、J2ME(Java Micro Edition)和J2EE(Java Enterprise Edition)这三个平台,分别针对桌面应用、移动设备和企业级服务器应用。 学习Java的过程中,不仅要掌握语法,还要理解其背后的设计哲学,形成将现实生活问题转化为计算机语言的习惯。通过不断地实践和思考,才能真正掌握Java的精髓,成为一个熟练的Java开发者。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

尝试使用 Python 实现灰度图像的反色运算。反色运 算的基本公式为 T(x,y)=255-S(x,y)。其中,T 代表反色后 的图像,S 代表原始图像

在Python中,我们可以使用PIL库来处理图像,包括进行灰度图像的反色操作。首先,你需要安装Pillow库,如果还没有安装可以使用`pip install pillow`命令。 下面是一个简单的函数,它接受一个灰度图像作为输入,然后通过公式T(x, y) = 255 - S(x, y)计算每个像素点的反色值: ```python from PIL import Image def invert_grayscale_image(image_path): # 打开灰度图像 img = Image.open(image_path).convert('L')
recommend-type

U盘与硬盘启动安装教程:从菜鸟到专家

"本教程详细介绍了如何使用U盘和硬盘作为启动安装工具,特别适合初学者。" 在计算机领域,有时候我们需要在没有操作系统或者系统出现问题的情况下重新安装系统。这时,U盘或硬盘启动安装工具就显得尤为重要。本文将详细介绍如何制作U盘启动盘以及硬盘启动的相关知识。 首先,我们来谈谈U盘启动的制作过程。这个过程通常分为几个步骤: 1. **格式化U盘**:这是制作U盘启动盘的第一步,目的是清除U盘内的所有数据并为其准备新的存储结构。你可以选择快速格式化,这会更快地完成操作,但请注意这将永久删除U盘上的所有信息。 2. **使用启动工具**:这里推荐使用unetbootin工具。在启动unetbootin时,你需要指定要加载的ISO镜像文件。ISO文件是光盘的镜像,包含了完整的操作系统安装信息。如果你没有ISO文件,可以使用UltraISO软件将实际的光盘转换为ISO文件。 3. **制作启动盘**:在unetbootin中选择正确的ISO文件后,点击开始制作。这个过程可能需要一些时间,完成后U盘就已经变成了一个可启动的设备。 4. **配置启动文件**:为了确保电脑启动后显示简体中文版的Linux,你需要将syslinux.cfg配置文件覆盖到U盘的根目录下。这样,当电脑从U盘启动时,会直接进入中文界面。 接下来,我们讨论一下光盘ISO文件的制作。如果你手头有物理光盘,但需要将其转换为ISO文件,可以使用UltraISO软件的以下步骤: 1. **启动UltraISO**:打开软件,找到“工具”菜单,选择“制作光盘映像文件”。 2. **选择源光盘**:在CD-ROM选项中,选择包含你想要制作成ISO文件的光盘的光驱。 3. **设定输出信息**:确定ISO文件的保存位置和文件名,这将是你的光盘镜像文件。 4. **开始制作**:点击“制作”,软件会读取光盘内容并生成ISO文件,等待制作完成。 通过以上步骤,你就能成功制作出U盘启动盘和光盘ISO文件,从而能够灵活地进行系统的安装或修复。如果你在操作过程中遇到问题,也可以访问提供的淘宝小店进行交流和寻求帮助。 U盘和硬盘启动安装工具是计算机维护和系统重装的重要工具,了解并掌握其制作方法对于任何级别的用户来说都是非常有益的。随着技术的发展,U盘启动盘由于其便携性和高效性,已经成为了现代装机和应急恢复的首选工具。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依