风电功率预测matlab
时间: 2023-08-05 16:09:30 浏览: 115
根据引用\[1\]和引用\[2\]的内容,可以得知风电功率预测方法可以使用灰色理论预测模型和深度置信网络模型相结合的组合模型。该方法可以实现风电中长期功率的高精度预测,并且在选取适当的网络参数的情况下,预测误差较小且运算效率较高。而根据引用\[3\]的内容,可以看出在matlab中进行风电功率预测时,可以使用反归一化函数mapminmax('reverse')对预测值和真实值进行反归一化处理,然后计算根均方差(RMSE)来评估预测结果的准确性。
#### 引用[.reference_title]
- *1* [毕设题目:Matlab风电功率预测](https://blog.csdn.net/TIQCmatlab/article/details/121558156)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [(文章复现)5.基于BP神经网络的风电功率预测方法(MATLAB程序)](https://blog.csdn.net/weixin_56691527/article/details/128138836)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [【风电功率预测】基于matlab麻雀算法优化LSSVM风电功率预测(多输入单输出)【含Matlab源码 1718期】](https://blog.csdn.net/TIQCmatlab/article/details/123040995)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文