pytorch DQN代码实例
时间: 2023-10-30 10:05:57 浏览: 184
DQN代码实战,gym经典CartPole(小车倒立摆)模型,纯PyTorch框架,代码中包含4种DQN变体,注释清晰。
5星 · 资源好评率100%
当然,我可以给你一个基于PyTorch的DQN(Deep Q-Network)代码实例。以下是一个简单的示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import random
class DQN(nn.Module):
def __init__(self, state_size, action_size):
super(DQN, self).__init__()
self.fc1 = nn.Linear(state_size, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, action_size)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
def push(self, experience):
if len(self.buffer) >= self.capacity:
self.buffer.pop(0)
self.buffer.append(experience)
def sample(self, batch_size):
return random.sample(self.buffer, batch_size)
class DQNAgent:
def __init__(self, state_size, action_size, replay_buffer_capacity):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.state_size = state_size
self.action_size = action_size
self.replay_buffer = ReplayBuffer(replay_buffer_capacity)
self.model = DQN(state_size, action_size).to(self.device)
self.target_model = DQN(state_size, action_size).to(self.device)
self.target_model.load_state_dict(self.model.state_dict())
self.optimizer = optim.Adam(self.model.parameters(), lr=0.001)
def act(self, state, epsilon):
if random.random() > epsilon:
state = torch.tensor(state, dtype=torch.float32).unsqueeze(0).to(self.device)
with torch.no_grad():
action_values = self.model(state)
action = torch.argmax(action_values).item()
else:
action = random.randint(0, self.action_size - 1)
return action
def update_target_model(self):
self.target_model.load_state_dict(self.model.state_dict())
def train(self, batch_size, gamma):
if len(self.replay_buffer.buffer) < batch_size:
return
transitions = self.replay_buffer.sample(batch_size)
batch = list(zip(*transitions))
states = torch.tensor(batch[0], dtype=torch.float32).to(self.device)
actions = torch.tensor(batch[1], dtype=torch.long).to(self.device)
rewards = torch.tensor(batch[2], dtype=torch.float32).to(self.device)
next_states = torch.tensor(batch[3], dtype=torch.float32).to(self.device)
dones = torch.tensor(batch[4], dtype=torch.float32).to(self.device)
q_values = self.model(states).gather(1, actions.unsqueeze(1)).squeeze(1)
next_q_values = self.target_model(next_states).max(1)[0].detach()
expected_q_values = rewards + gamma * next_q_values * (1 - dones)
loss = F.smooth_l1_loss(q_values, expected_q_values)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
```
在这个示例中,我们定义了一个 `DQN` 类作为我们的深度Q网络,它包含三个全连接层。`ReplayBuffer` 类用于存储和采样经验回放缓冲区。`DQNAgent` 类则是我们的智能体,包含了模型、目标模型、优化器以及一些用于训练和动作选择的方法。
请注意,这只是一个简单的示例,你可能需要根据你的问题进行修改和扩展。你还需要实现环境来与智能体进行交互,收集经验并调用 `train` 方法进行训练。
希望这个代码示例能对你有所帮助!
阅读全文