int main() { SysTick_Init(168); NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); IN_Init(); TIM9_CH1_PWM_Init(500-1,84-1); TIM9_CH2_PWM_Init(500-1,84-1); IN1=1; IN2=1; while(1) { TIM_SetCompare1(TIM9,100); TIM_SetCompare2(TIM9,400); IN1=1; IN2=0; } }

时间: 2024-04-17 11:27:54 浏览: 15
这段代码是一个典型的嵌入式系统中的主函数,主要用于初始化一些硬件设备并且进行一些操作。具体来说: 1. `SysTick_Init(168);` 初始化系统定时器,设置时钟频率为168MHz。 2. `NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);` 配置中断优先级分组为2。 3. `IN_Init();` 初始化输入引脚。 4. `TIM9_CH1_PWM_Init(500-1,84-1);` 初始化定时器9的通道1,使用PWM模式,设置周期为500-1,预分频系数为84-1。 5. `TIM9_CH2_PWM_Init(500-1,84-1);` 初始化定时器9的通道2,使用PWM模式,设置周期为500-1,预分频系数为84-1。 6. `IN1=1;` 将IN1引脚设置为高电平。 7. `IN2=1;` 将IN2引脚设置为高电平。 8. 进入一个无限循环`while(1)`。 9. `TIM_SetCompare1(TIM9,100);` 设置定时器9的通道1的占空比为100。 10. `TIM_SetCompare2(TIM9,400);` 设置定时器9的通道2的占空比为400。 11. `IN1=1;` 将IN1引脚设置为高电平。 12. `IN2=0;` 将IN2引脚设置为低电平。 根据代码推测,这段代码可能是用于控制某个电机或驱动器的运行状态。
相关问题

int main() { SysTick_Init(168); NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); IN_Init(); TIM9_CH1_PWM_Init(500-1,84-1); TIM9_CH2_PWM_Init(500-1,84-1); IN1=1; IN2=1; while(1) { TIM_SetCompare1(TIM9,100); TIM_SetCompare2(TIM9,400); IN1=1; IN2=0; } }如何调节转速

这段代码中,通过调节`TIM_SetCompare1()`和`TIM_SetCompare2()`函数中的参数值可以实现对转速的调节。这两个函数用于设置定时器9的通道1和通道2的占空比,从而控制输出信号的占空比,进而影响电机或驱动器的转速。 在代码中,`TIM_SetCompare1(TIM9,100);`设置了通道1的占空比为100,`TIM_SetCompare2(TIM9,400);`设置了通道2的占空比为400。你可以根据需要修改这两个参数值来调节转速。 请注意,具体的占空比和转速之间的关系取决于你所使用的具体硬件设备和电机驱动器的特性。你可能需要根据实际情况进行一些试验和调整才能得到期望的转速效果。

int main() { u16 i; u8 fx=0; SysTick_Init(168); NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //ÖжÏÓÅÏȼ¶·Ö×é ·Ö2×é LED_Init(); TIM14_CH1_PWM_Init(500-1,84-1); //ƵÂÊÊÇ2Kh while(1) { if(fx==0) { i++; if(i==100) { fx=1; } } else { i--; if(i==0) { fx=0; } } TIM_SetCompare1(TIM14,i); //iÖµ×î´ó¿ÉÒÔÈ¡499£¬ÒòΪARR×î´óÖµÊÇ499. delay_ms(10); } }

这段代码是一个简单的嵌入式C程序,主要实现了使用定时器TIM14产生PWM信号控制LED的亮度变化。程序中使用了SysTick定时器和中断配置以及LED初始化函数。在主循环中,通过改变i的值来控制PWM的占空比,从而实现LED亮度的渐变效果。程序中还定义了一个变量fx来控制i的增减方向。当fx为0时,i递增;当fx为1时,i递减。每次改变i的值后,通过TIM_SetCompare1函数设置TIM14的比较值,从而改变PWM的占空比。最后通过delay_ms函数实现了10毫秒的延迟。 需要注意的是,该代码中使用了一些未定义的函数和数据类型,比如u16和u8,以及SysTick_Init、NVIC_PriorityGroupConfig、LED_Init和TIM14_CH1_PWM_Init等函数。这些函数的具体实现需要根据具体的开发环境来确定。

相关推荐

为下面每一行代码添加注释:#include "stm32f10x.h" void RCC_Configuration(void) { /* Enable GPIOA, GPIOC and AFIO clocks / RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOC | RCC_APB2Periph_AFIO, ENABLE); / Enable SYSCFG clock / RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE); } void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; / Configure PA0 pin as input floating / GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure); / Configure PC13 pin as output push-pull / GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOC, &GPIO_InitStructure); } void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure / Configure the NVIC Preemption Priority Bits / NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0); / Enable the EXTI0 Interrupt / NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } void EXTI_Configuration(void) { EXTI_InitTypeDef EXTI_InitStructure; / Configure EXTI Line0 to generate an interrupt on falling edge / EXTI_InitStructure.EXTI_Line = EXTI_Line0; EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; EXTI_InitStructure.EXTI_LineCmd = ENABLE; EXTI_Init(&EXTI_InitStructure); / Connect EXTI Line0 to PA0 pin / GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_PinSource0); } void SysTick_Configuration(void) { / Configure SysTick to generate an interrupt every 1ms / if (SysTick_Config(SystemCoreClock / 1000)) { / Capture error / while (1); } } void Delay(__IO uint32_t nTime) { / Wait for nTime millisecond / TimingDelay = nTime; while (TimingDelay != 0); } void TimingDelay_Decrement(void) { if (TimingDelay != 0x00) { TimingDelay--; } } int main(void) { RCC_Configuration(); GPIO_Configuration(); NVIC_Configuration(); EXTI_Configuration(); SysTick_Configuration(); / Infinite loop / while (1) { / Toggle PC13 LED every 500ms / GPIOC->ODR ^= GPIO_Pin_13; Delay(500); } } void EXTI0_IRQHandler(void) { / Check if PA0 button is pressed / if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_0) == RESET) { / Reset MCU / NVIC_SystemReset(); } / Clear EXTI Line0 pending bit */ EXTI_ClearITPendingBit(EXTI_Line0); }

最新推荐

recommend-type

基于matlab实现人工免疫算法的解决TSP问题的方法

基于matlab实现人工免疫算法的解决TSP问题的方法,体现了免疫算法在进化计算过程中的抗原学习、记忆机制、浓度调节机制以及多样性抗体保持策略等优良特性.rar
recommend-type

麦肯锡图表绘制培训.pptx

麦肯锡图表绘制培训.pptx
recommend-type

Java_Android的自由轻量级流媒体前端.zip

Java_Android的自由轻量级流媒体前端
recommend-type

node-v18.20.2-linux-arm64

node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64 node-v18.20.2-linux-arm64node-v18.20.2-linux-arm64
recommend-type

华为的OD(Organizational Development)

华为的OD(Organizational Development)
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。