最小二乘法曲线拟合python
时间: 2023-08-27 10:20:57 浏览: 184
最小二乘法曲线拟合
最小二乘法是一种数学优化技术,用于通过最小化误差的平方和,寻找数据的最佳函数匹配。在Python中,可以使用NumPy和SciPy库来实现最小二乘法曲线拟合。
以下是一个使用最小二乘法拟合曲线的Python代码示例:
```
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
# 自定义函数
def func(x, a, b, c, d):
return -a * x - b + c - d
# 定义x、y散点坐标
x = np.array([0, 4, 8, 12, 16, 20, 24, 28])
y = np.array([0.1, 0.255, 0.15, 0.31, 0.1, 0.3, 0.2, 0.3])
# 非线性最小二乘法拟合
popt, pcov = curve_fit(func, x, y)
# 获取拟合系数
a = popt<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [使用Python最小二乘法拟合曲线的代码实现](https://blog.csdn.net/Roy_70/article/details/123853693)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [最小二乘法拟合python实现](https://blog.csdn.net/qq_43619847/article/details/126014168)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [Python-最小二乘法曲线拟合](https://blog.csdn.net/weixin_39657094/article/details/110349318)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
阅读全文