python opencv 图片合成视频
时间: 2024-09-15 21:11:41 浏览: 62
在Python中使用OpenCV库将图片合成视频是一个相对简单的任务,主要涉及到读取图片序列、将它们逐帧编码为视频帧,并保存为视频文件。下面是这个过程的一个简单介绍:
1. 首先,需要安装OpenCV库,可以使用pip命令安装:
```bash
pip install opencv-python
```
2. 接着,编写Python脚本来合成视频。首先导入必要的模块,读取图片序列,然后创建一个视频编写器对象,该对象定义了输出视频的属性,如分辨率、帧率等。
3. 使用循环读取每张图片,将每张图片转换为视频帧,并使用视频编写器写入帧。
4. 最后,关闭视频编写器,释放资源。
下面是一个简单的代码示例,展示了如何实现这个过程:
```python
import cv2
import numpy as np
# 图片文件的前缀和后缀
image_folder = 'path_to_images/' # 图片文件夹路径
image_prefix = 'image_'
image_extension = '.jpg'
# 创建视频编写器对象
fourcc = cv2.VideoWriter_fourcc(*'XVID')
video_width = 640 # 视频宽度
video_height = 480 # 视频高度
frame_rate = 24 # 帧率
out = cv2.VideoWriter('output.avi', fourcc, frame_rate, (video_width, video_height))
# 循环读取图片并写入视频
for i in range(1, 26):
img_name = image_folder + image_prefix + str(i) + image_extension
img = cv2.imread(img_name)
if img is None:
break
# 如果图片尺寸和视频尺寸不匹配,则调整图片尺寸
img = cv2.resize(img, (video_width, video_height))
out.write(img)
# 释放资源
out.release()
cv2.destroyAllWindows()
```
在这个代码中,首先指定了图片所在的文件夹以及图片的命名规则。然后创建了一个视频编写器对象,指定了编码格式和帧率。之后通过循环读取图片文件夹中所有的图片文件,将它们写入到视频文件中。最后释放了视频编写器占用的资源。
阅读全文
相关推荐


















