expansion ratio

时间: 2024-04-24 16:26:40 浏览: 290
扩张比(expansion ratio)是指物体在受力作用下的尺寸变化比例。它可以用来描述物体在某个方向上的线性扩张或收缩程度。扩张比的计算公式为: 扩张比 = (最终尺寸 - 初始尺寸)/ 初始尺寸 其中,最终尺寸是物体在受力后的尺寸,初始尺寸是物体在受力前的尺寸。扩张比可以用百分数或小数表示,正值表示扩张,负值表示收缩。
相关问题

def _make_denseblock(self, block, blocks): layers = [] for i in range(blocks): # Currently we fix the expansion ratio as the default value layers.append(block(self.inplanes, growthRate=self.growthRate, dropRate=self.dropRate)) self.inplanes += self.growthRate return nn.Sequential(*layers) 这段代码意思

这段代码实现了一个 Dense Block 的生成函数 `_make_denseblock`,它接受两个参数:`block` 表示要使用的基础网络层,`blocks` 表示要生成的 Dense Block 的个数。函数返回一个由 Dense Block 中的所有网络层按顺序组成的 PyTorch 的 `nn.Sequential` 对象。 在函数中,首先定义了一个空列表 `layers`,然后通过一个循环来生成 Dense Block 中的每个网络层。每次循环中,都会调用 `block` 函数来生成一个网络层,并将其添加到 `layers` 列表中。其中,`self.inplanes` 表示当前输入的通道数,`self.growthRate` 表示每个网络层要增加的通道数,`self.dropRate` 表示每个网络层的 dropout 概率。在每次循环结束后,都会将 `self.inplanes` 更新为当前的通道数,这样下一个网络层的输入通道数就是上一个网络层的输出通道数。 最后,函数返回一个 `nn.Sequential` 对象,其中包含了所有生成的网络层。这个对象可以被视为一个整体,方便在后续的神经网络模型中使用。

请分析这段代码class GhostBottleneck(nn.Module): """ Ghost bottleneck w/ optional SE""" def __init__(self, in_chs, mid_chs, out_chs, dw_kernel_size=3, stride=1, act_layer=nn.ReLU, se_ratio=0.): super(GhostBottleneck, self).__init__() has_se = se_ratio is not None and se_ratio > 0. self.stride = stride # Point-wise expansion self.ghost1 = GhostModule(in_chs, mid_chs, relu=True) # Depth-wise convolution if self.stride > 1: self.conv_dw = nn.Conv2d(mid_chs, mid_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size - 1) // 2, groups=mid_chs, bias=False) self.bn_dw = nn.BatchNorm2d(mid_chs) # Squeeze-and-excitation if has_se: self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio) else: self.se = None # Point-wise linear projection self.ghost2 = GhostModule(mid_chs, out_chs, relu=False) # shortcut if (in_chs == out_chs and self.stride == 1): self.shortcut = nn.Sequential() else: self.shortcut = nn.Sequential( nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size - 1) // 2, groups=in_chs, bias=False), nn.BatchNorm2d(in_chs), nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_chs), ) def forward(self, x): residual = x # 1st ghost bottleneck x = self.ghost1(x) # Depth-wise convolution if self.stride > 1: x = self.conv_dw(x) x = self.bn_dw(x) # Squeeze-and-excitation if self.se is not None: x = self.se(x) # 2nd ghost bottleneck x = self.ghost2(x) x += self.shortcut(residual) return x

这段代码定义了一个名为GhostBottleneck的类,继承自nn.Module。该类实现了一个带有可选Squeeze-and-excitation (SE)的Ghost bottleneck。 在初始化方法中,它接受一些参数,包括输入通道数(in_chs)、中间通道数(mid_chs)、输出通道数(out_chs)、深度卷积核大小(dw_kernel_size)、步长(stride)、激活函数(act_layer)和SE比率(se_ratio)。它首先判断是否需要SE操作,并保存步长。然后,它定义了以下组件: - ghost1: 一个GhostModule,用于进行点卷积扩展,将输入通道数扩展到中间通道数。 - conv_dw和bn_dw: 如果步长大于1,则定义了一个深度卷积层和对应的批归一化层,用于进行深度卷积操作。 - se: 如果需要SE操作,则定义了一个SqueezeExcite模块,用于进行Squeeze-and-excitation操作。 - ghost2: 一个GhostModule,用于将中间通道数缩减到输出通道数。 - shortcut: 根据输入通道数和输出通道数以及步长的不同情况,定义了不同的shortcut结构。如果输入通道数等于输出通道数且步长为1,则shortcut为空;否则,shortcut由一系列卷积层和批归一化层组成。 在前向传播方法中,首先保存输入的残差,然后按照以下顺序进行操作: - 使用ghost1进行第一个ghost bottleneck操作,将输入x转换为中间特征x。 - 如果步长大于1,则使用conv_dw和bn_dw进行深度卷积操作。 - 如果需要SE操作,则使用se进行Squeeze-and-excitation操作。 - 使用ghost2进行第二个ghost bottleneck操作,将中间特征x转换为输出特征x。 - 将残差与shortcut结果相加得到最终输出x。 该GhostBottleneck类实现了一种特殊的残差块结构,通过使用GhostModule和深度卷积、SE等操作,实现了通道数的扩展和缩减,并在残差连接中处理了不同通道数和步长的情况。这种结构常用于一些深度学习模型中的卷积层。
阅读全文

相关推荐

最新推荐

recommend-type

LABVIEW程序实例-DS写属性数据.zip

labview程序代码参考学习使用,希望对你有所帮助。
recommend-type

毕设和企业适用springboot生鲜鲜花类及数据处理平台源码+论文+视频.zip

毕设和企业适用springboot生鲜鲜花类及数据处理平台源码+论文+视频.zip
recommend-type

毕设和企业适用springboot企业数据智能分析平台类及汽车管理平台源码+论文+视频.zip

毕设和企业适用springboot企业数据智能分析平台类及汽车管理平台源码+论文+视频
recommend-type

毕设和企业适用springboot社区物业类及企业创新研发平台源码+论文+视频.zip

毕设和企业适用springboot社区物业类及企业创新研发平台源码+论文+视频
recommend-type

用JavaScript实现文字上下浮动效果

<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Floating Text Example</title> <style> .floating-text { font-size: 24px; position: relative; animation: float 3s ease-in-out infinite; } @keyframes float { 0%, 100% { transform: translateY(0); } 50% { transform: translateY(-20px); } } </style> </head> <body> <div class="floating-text">Hello, I'm floating!</div> <script> document.addEventListener('DOMContentLoaded', function() {
recommend-type

Windows平台下的Fastboot工具使用指南

资源摘要信息:"Windows Fastboot.zip是一个包含了Windows环境下使用的Fastboot工具的压缩文件。Fastboot是一种在Android设备上使用的诊断和工程工具,它允许用户通过USB连接在设备的bootloader模式下与设备通信,从而可以对设备进行刷机、解锁bootloader、安装恢复模式等多种操作。该工具是Android开发者和高级用户在进行Android设备维护或开发时不可或缺的工具之一。" 知识点详细说明: 1. Fastboot工具定义: Fastboot是一种与Android设备进行交互的命令行工具,通常在设备的bootloader模式下使用,这个模式允许用户直接通过USB向设备传输镜像文件以及其他重要的设备分区信息。它支持多种操作,如刷写分区、读取设备信息、擦除分区等。 2. 使用环境: Fastboot工具原本是Google为Android Open Source Project(AOSP)提供的一个组成部分,因此它通常在Linux或Mac环境下更为原生。但由于Windows系统的普及性,许多开发者和用户需要在Windows环境下操作,因此存在专门为Windows系统定制的Fastboot版本。 3. Fastboot工具的获取与安装: 用户可以通过下载Android SDK平台工具(Platform-Tools)的方式获取Fastboot工具,这是Google官方提供的一个包含了Fastboot、ADB(Android Debug Bridge)等多种工具的集合包。安装时只需要解压到任意目录下,然后将该目录添加到系统环境变量Path中,便可以在任何位置使用Fastboot命令。 4. Fastboot的使用: 要使用Fastboot工具,用户首先需要确保设备已经进入bootloader模式。进入该模式的方法因设备而异,通常是通过组合特定的按键或者使用特定的命令来实现。之后,用户通过运行命令提示符或PowerShell来输入Fastboot命令与设备进行交互。常见的命令包括: - fastboot devices:列出连接的设备。 - fastboot flash [partition] [filename]:将文件刷写到指定分区。 - fastboot getvar [variable]:获取指定变量的值。 - fastboot reboot:重启设备。 - fastboot unlock:解锁bootloader,使得设备能够刷写非官方ROM。 5. Fastboot工具的应用场景: - 设备的系统更新或刷机。 - 刷入自定义恢复(如TWRP)。 - 在开发阶段对设备进行调试。 - 解锁设备的bootloader,以获取更多的自定义权限。 - 修复设备,例如清除用户数据分区或刷写新的boot分区。 - 加入特定的内核或修改系统分区。 6. 注意事项: 在使用Fastboot工具时需要格外小心,错误的操作可能会导致设备变砖或丢失重要数据。务必保证操作前已备份重要数据,并确保下载和刷入的固件是针对相应设备的正确版本。此外,不同的设备可能需要特定的驱动程序支持,因此在使用Fastboot之前还需要安装相应的USB驱动。 7. 压缩包文件说明: 资源中提到的"windows-fastboot.zip"是一个压缩文件,解压后应当包含一个或多个可执行文件、库文件等,这些文件合起来组成了Fastboot工具的Windows版本。解压后,用户应当参考解压后的文档或说明文件来进行安装和配置,以便能够正确地使用该工具。 总结而言,Fastboot作为一个功能强大的工具,它为Android设备的开发者和高级用户提供了一个界面简洁但功能全面的操作平台,以实现对设备深层次的控制。然而,它的使用要求用户具备一定的技术知识和经验,否则不当操作可能导致设备损坏。因此,使用Fastboot时应当谨慎并确保自己了解每个命令的具体含义和后果。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

DLMS规约深度剖析:从基础到电力通信标准的全面掌握

![DLMS规约基础介绍](https://afteracademy.com/images/what-is-data-model-in-dbms-and-what-are-its-types-hierarchical-model-48add64778fd4b8f.jpg) # 摘要 DLMS/COSEM是一种广泛应用于智能电网和电力计量领域的通信协议。本文首先介绍了DLMS规约的基础概念、起源以及核心技术原理,包括协议架构、数据模型、通信过程、数据封装与传输机制。随后,文章探讨了DLMS规约在电力通信中的实际应用,如智能电表和电网自动化系统的数据通信,并分析了DLMS规约的测试与验证方法。文
recommend-type

修改代码,使其正确运行

要使提供的代码能够正确运行,需要解决以下几个关键点: 1. **输入处理**:确保从控制台读取的文法规则和待解析字符串格式正确。 2. **FIRST集和FOLLOW集计算**:确保FIRST集和FOLLOW集的计算逻辑正确无误。 3. **预测分析表构建**:确保预测分析表的构建逻辑正确,并且能够处理所有可能的情况。 4. **LL(1)分析器**:确保LL(1)分析器能够正确解析输入字符串并输出解析过程。 以下是经过修改后的完整代码: ```java package com.example.demo10; import java.util.*; public class Main
recommend-type

Python机器学习基础入门与项目实践

资源摘要信息:"机器学习概述与Python在机器学习中的应用" 机器学习是人工智能的一个分支,它让计算机能够通过大量的数据学习来自动寻找规律,并据此进行预测或决策。机器学习的核心是建立一个能够从数据中学习的模型,该模型能够在未知数据上做出准确预测。这一过程通常涉及到数据的预处理、特征选择、模型训练、验证、测试和部署。 机器学习方法主要可以分为监督学习、无监督学习、半监督学习和强化学习。 监督学习涉及标记好的训练数据,其目的是让模型学会从输入到输出的映射。在这个过程中,模型学习根据输入数据推断出正确的输出值。常见的监督学习算法包括线性回归、逻辑回归、支持向量机(SVM)、决策树、随机森林和神经网络等。 无监督学习则是处理未标记的数据,其目的是探索数据中的结构。无监督学习算法试图找到数据中的隐藏模式或内在结构。常见的无监督学习算法包括聚类、主成分分析(PCA)、关联规则学习等。 半监督学习和强化学习则是介于监督学习和无监督学习之间的方法。半监督学习使用大量未标记的数据和少量标记数据进行学习,而强化学习则是通过与环境的交互来学习如何做出决策。 Python作为一门高级编程语言,在机器学习领域中扮演了非常重要的角色。Python之所以受到机器学习研究者和从业者的青睐,主要是因为其丰富的库和框架、简洁易读的语法以及强大的社区支持。 在Python的机器学习生态系统中,有几个非常重要的库: 1. NumPy:提供高性能的多维数组对象,以及处理数组的工具。 2. Pandas:一个强大的数据分析和操作工具库,提供DataFrame等数据结构,能够方便地进行数据清洗和预处理。 3. Matplotlib:一个用于创建静态、动态和交互式可视化的库,常用于生成图表和数据可视化。 4. Scikit-learn:一个简单且高效的工具,用于数据挖掘和数据分析,支持多种分类、回归、聚类算法等。 5. TensorFlow:由Google开发的开源机器学习库,适用于大规模的数值计算,尤其擅长于构建和训练深度学习模型。 6. Keras:一个高层神经网络API,能够使用TensorFlow、CNTK或Theano作为其后端进行计算。 机器学习的典型工作流程包括数据收集、数据预处理、特征工程、模型选择、训练、评估和部署。在这一流程中,Python可以贯穿始终,从数据采集到模型部署,Python都能提供强大的支持。 由于机器学习的复杂性,一个成功的机器学习项目往往需要跨学科的知识,包括统计学、数学、计算机科学、数据分析等领域。因此,掌握Python及其相关库的使用只是机器学习工作的一部分,还需要有扎实的理论基础和实践经验。 总结来说,机器学习是一个涉及数据挖掘、统计分析、算法优化等多个领域的综合性科学。Python由于其简洁的语法、丰富的库支持和强大的社区力量,成为了进行机器学习研究和应用开发的首选语言。随着技术的不断进步和算法的持续优化,机器学习的应用领域也在不断扩大,从早期的搜索引擎、推荐系统到现代的自动驾驶、医疗诊断等领域都有着广泛的应用。