Q_K_sample = torch.matmul(Q.unsqueeze(-2), K_sample.transpose(-2, -1)).squeeze(-2)
时间: 2024-04-19 18:24:22 浏览: 143
这行代码使用了 PyTorch 的 `matmul` 函数来进行张量的矩阵乘法操作。
首先,`Q.unsqueeze(-2)` 会在倒数第二个维度上插入一个新的维度,假设原始张量 Q 的形状为 `(B, H, L_Q, E)`,则插入新维度后的形状为 `(B, H, 1, L_Q, E)`。
然后,`K_sample.transpose(-2, -1)` 会将 K_sample 的倒数第二个维度和倒数第一个维度进行交换,假设 K_sample 的形状为 `(B, H, L_K, E)`,则交换后的形状为 `(B, H, E, L_K)`。
接下来,`torch.matmul(Q.unsqueeze(-2), K_sample.transpose(-2, -1))` 利用矩阵乘法操作对两个张量进行相乘,得到的结果形状为 `(B, H, 1, L_Q, L_K)`。
最后,`squeeze(-2)` 会将结果张量的倒数第二个维度大小为 1 的维度删除,得到最终的结果张量形状为 `(B, H, L_Q, L_K)`。
综上所述,这行代码的作用是计算 Q 和 K_sample 的注意力分数矩阵,其中 Q 是查询张量,K_sample 是键张量的样本,注意力分数矩阵的形状为 `(B, H, L_Q, L_K)`。
相关问题
class ResidualBlock(nn.Module): def init(self, in_channels, out_channels, dilation): super(ResidualBlock, self).init() self.conv = nn.Sequential( nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU(), nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU() ) self.attention = nn.Sequential( nn.Conv1d(out_channels, out_channels, kernel_size=1), nn.Sigmoid() ) self.downsample = nn.Conv1d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else None def forward(self, x): residual = x out = self.conv(x) attention = self.attention(out) out = out * attention if self.downsample: residual = self.downsample(residual) out += residual return out class VMD_TCN(nn.Module): def init(self, input_size, output_size, n_k=1, num_channels=16, dropout=0.2): super(VMD_TCN, self).init() self.input_size = input_size self.nk = n_k if isinstance(num_channels, int): num_channels = [num_channels*(2**i) for i in range(4)] self.layers = nn.ModuleList() self.layers.append(nn.utils.weight_norm(nn.Conv1d(input_size, num_channels[0], kernel_size=1))) for i in range(len(num_channels)): dilation_size = 2 ** i in_channels = num_channels[i-1] if i > 0 else num_channels[0] out_channels = num_channels[i] self.layers.append(ResidualBlock(in_channels, out_channels, dilation_size)) self.pool = nn.AdaptiveMaxPool1d(1) self.fc = nn.Linear(num_channels[-1], output_size) self.w = nn.Sequential(nn.Conv1d(num_channels[-1], num_channels[-1], kernel_size=1), nn.Sigmoid()) # 特征融合 门控系统 # self.fc1 = nn.Linear(output_size * (n_k + 1), output_size) # 全部融合 self.fc1 = nn.Linear(output_size * 2, output_size) # 只选择其中两个融合 self.dropout = nn.Dropout(dropout) # self.weight_fc = nn.Linear(num_channels[-1] * (n_k + 1), n_k + 1) # 置信度系数,对各个结果加权平均 软投票思路 def vmd(self, x): x_imfs = [] signal = np.array(x).flatten() # flatten()必须加上 否则最后一个batch报错size不匹配! u, u_hat, omega = VMD(signal, alpha=512, tau=0, K=self.nk, DC=0, init=1, tol=1e-7) for i in range(u.shape[0]): imf = torch.tensor(u[i], dtype=torch.float32) imf = imf.reshape(-1, 1, self.input_size) x_imfs.append(imf) x_imfs.append(x) return x_imfs def forward(self, x): x_imfs = self.vmd(x) total_out = [] # for data in x_imfs: for data in [x_imfs[0], x_imfs[-1]]: out = data.transpose(1, 2) for layer in self.layers: out = layer(out) out = self.pool(out) # torch.Size([96, 56, 1]) w = self.w(out) out = w * out # torch.Size([96, 56, 1]) out = out.view(out.size(0), -1) out = self.dropout(out) out = self.fc(out) total_out.append(out) total_out = torch.cat(total_out, dim=1) # 考虑w1total_out[0]+ w2total_out[1],在第一维,权重相加得到最终结果,不用cat total_out = self.dropout(total_out) output = self.fc1(total_out) return output优化代码
1. 代码中的注释最好用英文,这样可以方便其他国家的程序员阅读和理解。
2. 在ResidualBlock类中,应该将init()改为__init__(),这是Python中的一个特殊方法,用于初始化类的实例变量。
3. 对于VMD_TCN类中的layers部分,可以使用一个for循环来代替多次重复的代码。例如:
```
for i in range(len(num_channels)):
dilation_size = 2 ** i
in_channels = num_channels[i-1] if i > 0 else num_channels[0]
out_channels = num_channels[i]
self.layers.append(ResidualBlock(in_channels, out_channels, dilation_size))
```
4. 不建议在forward()函数中使用numpy数组,应该使用PyTorch张量来保证代码的可重复性和GPU加速。例如,将self.vmd(x)中的signal变量改为torch.tensor(signal, dtype=torch.float32)。
5. 对于全连接层的输入尺寸,可以使用num_channels[-1] * self.nk代替output_size * (self.nk + 1),这样可以避免使用self.nk + 1这个魔数。
6. 在vmd()函数中,x_imfs可以使用PyTorch张量来存储,而不是使用Python列表。例如,可以使用torch.zeros((self.nk+1, self.input_size))来创建一个张量,并将每个u[i]复制到对应的张量中。这样可以避免在循环中多次创建张量,提高代码的效率。
7. 在forward()函数中,可以使用torch.cat()函数来将所有输出张量连接起来,而不是使用Python列表。例如,可以将total_out定义为一个空的张量,然后在每次迭代中使用torch.cat()函数将输出张量连接到total_out中。这样可以避免在循环中多次分配内存,提高代码的效率。
import torch import torch.nn as nn from pointnet2_lib.pointnet2.pointnet2_modules import PointnetFPModule, PointnetSAModuleMSG from lib.config import cfg def get_model(input_channels=6, use_xyz=True): return Pointnet2MSG(input_channels=input_channels, use_xyz=use_xyz) class Pointnet2MSG(nn.Module): def __init__(self, input_channels=6, use_xyz=True): super().__init__() self.SA_modules = nn.ModuleList() channel_in = input_channels skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.__len__()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.__len__()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] self.SA_modules.append( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ) ) skip_channel_list.append(channel_out) channel_in = channel_out self.FP_modules = nn.ModuleList() for k in range(cfg.RPN.FP_MLPS.__len__()): pre_channel = cfg.RPN.FP_MLPS[k + 1][-1] if k + 1 < len(cfg.RPN.FP_MLPS) else channel_out self.FP_modules.append( PointnetFPModule(mlp=[pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k]) ) def _break_up_pc(self, pc): xyz = pc[..., 0:3].contiguous() features = ( pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None ) return xyz, features def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0]中的self.SA_modules.append( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ) )是什么含义和作用
这段代码定义了一个PointNet++网络的模型,其中SA_modules是一系列的PointnetSAModuleMSG模块,每个模块的作用是对输入的点云进行分组、采样、卷积和池化操作。FP_modules是一系列的PointnetFPModule模块,每个模块的作用是对上一层的特征进行上采样和卷积操作,最后输出整个网络的特征。其中,PointnetSAModuleMSG和PointnetFPModule是PointNet++网络中的两种核心模块。具体地,PointnetSAModuleMSG用于处理不同密度的点云,而PointnetFPModule用于特征融合和特征提取。在SA_modules中,PointnetSAModuleMSG通过npoint、radii、nsamples和mlps等参数来定义不同的分组、采样和卷积操作,以逐步提取点云的局部特征。在FP_modules中,PointnetFPModule通过mlp参数来定义上采样和卷积操作,以将不同层次的特征进行融合。
阅读全文