NSGA-II多目标优化python
时间: 2023-08-27 17:14:06 浏览: 123
NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种常用的多目标优化算法。面是一个使用Python实现NSGA-II的示例代码:
```python
import numpy as np
from numpy.random import rand
from functools import partial
from operator import itemgetter
def nsga2(population_size, num_generations, num_objectives, num_variables, lower_bounds, upper_bounds, crossover_prob, mutation_prob):
# 初始化种群
population = initialize_population(population_size, num_variables, lower_bounds, upper_bounds)
for generation in range(num_generations):
# 计算个体的适应度值
fitness_values = evaluate_population(population)
# 进行非支配排序和拥挤度分配
fronts = non_dominated_sort(fitness_values)
crowding_distances = crowding_distance_assignment(fronts)
# 创建新一代种群
offspring = []
while len(offspring) < population_size:
# 选择父代个体
parent_indices = select_parents(fronts, crowding_distances)
parent1 = population[parent_indices[0]]
parent2 = population[parent_indices[1]]
# 交叉和变异产生子代个体
child = crossover(parent1, parent2, crossover_prob)
child = mutate(child, mutation_prob, lower_bounds, upper_bounds)
offspring.append(child)
# 合并父代和子代个体,进行环境选择
population = environmental_selection(population, offspring, population_size)
# 返回最终的非支配排序结果
fitness_values = evaluate_population(population)
fronts = non_dominated_sort(fitness_values)
return population, fitness_values, fronts
def initialize_population(population_size, num_variables, lower_bounds, upper_bounds):
population = []
for _ in range(population_size):
individual = lower_bounds + rand(num_variables) * (upper_bounds - lower_bounds)
population.append(individual)
return population
def evaluate_population(population):
fitness_values = []
for individual in population:
# 根据问题定义计算个体的适应度值
fitness = [objective1(individual), objective2(individual), ...] # 替换成实际问题的目标函数
fitness_values.append(fitness)
return np.array(fitness_values)
def non_dominated_sort(fitness_values):
# 实现非支配排序算法
# 返回每个个体所属的前沿
return fronts
def crowding_distance_assignment(fronts):
# 计算每个个体的拥挤度距离
# 返回每个个体的拥挤度距离
return crowding_distances
def select_parents(fronts, crowding_distances):
# 选择父代个体
# 返回两个父代个体的索引
return parent_indices
def crossover(parent1, parent2, crossover_prob):
# 交叉操作
# 返回子代个体
return child
def mutate(child, mutation_prob, lower_bounds, upper_bounds):
# 变异操作
# 返回变异后的个体
return mutated_child
def environmental_selection(population, offspring, population_size):
# 环境选择
# 返回新一代种群
return new_population
# 示例问题的目标函数
def objective1(individual):
return individual[0]**2
def objective2(individual):
return (individual[0]-2)**2
# 示例代码的使用
population_size = 100
num_generations = 50
num_objectives = 2
num_variables = 1
lower_bounds = [0]
upper_bounds = [5]
crossover_prob = 0.8
mutation_prob = 0.1
population, fitness_values, fronts = nsga2(population_size, num_generations, num_objectives, num_variables, lower_bounds, upper_bounds, crossover_prob, mutation_prob)
# 输出最终的非支配排序结果
for i, front in enumerate(fronts):
print("Front", i+1)
for individual in front:
print("Fitness:", fitness_values[individual])
print("Solution:", population[individual])
```
在上述示例代码中,我们定义了一个 `nsga2` 函数来实现NSGA-II算法。该函数接受一些参数,例如种群大小、迭代代数、目标函数数量、变量数量等,并返回最终的非支配排序结果。
在算法的主要循环中,我们首先初始化种群,然后进行适应度评估、非支配排序和拥挤度分配。接下来,我们创建新一代种群,通过选择父代个体、进行交叉和变异来产生子代个体。最后,我们通过环境选择来合并父代和子代个体,并更新种群。
你需要根据你的具体问题进行相应的修改,包括目标函数的定义和问题特定的约束条件。此外,你还可以根据需要添加其他功能,例如改进的选择方法、多变量问题的处理等。
请确保替换示例代码中的目标函数、约束条件和其他问题特定的部分,以适应你的实际问题。
阅读全文