matlab粒子群算法求解vrp
时间: 2023-07-23 21:15:12 浏览: 188
您好!对于使用MATLAB求解VRP问题,可以使用粒子群算法(Particle Swarm Optimization,PSO)进行优化。以下是使用MATLAB编写的一个简单的粒子群算法求解VRP的示例代码:
```matlab
% VRP问题的目标函数
function cost = vrpObjectiveFunction(x, distMatrix, capacity)
numCustomers = size(distMatrix, 1) - 1;
numVehicles = size(x, 1);
cost = 0;
for k = 1:numVehicles
route = find(x(k, :) == 1);
if isempty(route)
continue;
end
route = [1 route numCustomers+1];
for i = 1:length(route)-1
cost = cost + distMatrix(route(i), route(i+1));
end
end
% 惩罚函数:超过车辆容量的部分
for k = 1:numVehicles
route = find(x(k, :) == 1);
if isempty(route)
continue;
end
demand = sum(distMatrix(route, numCustomers+1));
if demand > capacity
cost = cost + (demand - capacity);
end
end
end
% 粒子群算法求解VRP
function [bestSolution, bestCost] = vrpPSO(distMatrix, capacity, numParticles, maxIterations)
numCustomers = size(distMatrix, 1) - 1;
% 初始化粒子位置和速度
positions = zeros(numParticles, numCustomers);
velocities = zeros(numParticles, numCustomers);
% 初始化全局最优解和最优代价
globalBestSolution = [];
globalBestCost = inf;
% 迭代更新
for iter = 1:maxIterations
% 更新粒子位置和速度
for i = 1:numParticles
% 更新速度
r1 = rand(size(positions(i, :)));
r2 = rand(size(positions(i, :)));
velocities(i, :) = velocities(i, :) + c1 * r1 .* (personalBestPositions(i, :) - positions(i, :)) + c2 * r2 .* (globalBestSolution - positions(i, :));
% 限制速度范围
velocities(i, :) = max(velocities(i, :), vmin);
velocities(i, :) = min(velocities(i, :), vmax);
% 更新位置
positions(i, :) = positions(i, :) + velocities(i, :);
% 限制位置范围
positions(i, :) = max(positions(i, :), 0);
positions(i, :) = min(positions(i, :), 1);
end
% 更新个体最优解和最优代价
personalBestCosts = zeros(numParticles, 1);
personalBestPositions = zeros(numParticles, numCustomers);
for i = 1:numParticles
cost = vrpObjectiveFunction(positions(i, :), distMatrix, capacity);
personalBestCosts(i) = cost;
personalBestPositions(i, :) = positions(i, :);
if cost < globalBestCost
globalBestSolution = positions(i, :);
globalBestCost = cost;
end
end
end
bestSolution = globalBestSolution;
bestCost = globalBestCost;
end
% 示例使用
distMatrix = [0, 10, 20, 30;
10, 0, 15, 25;
20, 15, 0, 35;
30, 25, 35, 0];
capacity = 50;
numParticles = 50;
maxIterations = 100;
[bestSolution, bestCost] = vrpPSO(distMatrix, capacity, numParticles, maxIterations);
```
这是一个简单的示例代码,涉及到VRP问题的细节和约束条件可能会有所不同。您可以根据自己的需求进行修改和扩展,以更好地适应您的实际问题。希望对您有所帮助!
阅读全文