决策树python代码鸢尾花

时间: 2023-10-15 11:02:49 浏览: 56
当然!下面是一个使用决策树算法对鸢尾花数据集进行分类的Python代码示例: ```python # 导入所需的库 from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # 将数据集划分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建决策树模型 clf = DecisionTreeClassifier() # 训练模型 clf.fit(X_train, y_train) # 预测测试集的标签 y_pred = clf.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print("准确率:", accuracy) ``` 这段代码使用了`sklearn`库中的`DecisionTreeClassifier`类来创建一个决策树分类器模型,然后通过`fit`方法将模型与训练数据进行拟合,再使用`predict`方法对测试数据进行预测,最后使用`accuracy_score`函数计算预测结果的准确率。 希望对你有所帮助!如果有任何问题,请随时向我提问。

相关推荐

以下是使用Python实现C4.5算法的决策树代码,数据集使用著名的鸢尾花数据集: python from math import log import pandas as pd # 计算信息熵 def calc_entropy(dataset): n = len(dataset) label_counts = {} for data in dataset: label = data[-1] if label not in label_counts: label_counts[label] = 0 label_counts[label] += 1 entropy = 0.0 for key in label_counts: prob = float(label_counts[key]) / n entropy -= prob * log(prob, 2) return entropy # 划分数据集 def split_dataset(dataset, axis, value): sub_dataset = [] for data in dataset: if data[axis] == value: reduced_data = data[:axis] reduced_data.extend(data[axis+1:]) sub_dataset.append(reduced_data) return sub_dataset # 计算信息增益 def calc_info_gain(dataset, base_entropy, axis): n = len(dataset) # 计算划分后的熵 feature_values = set([data[axis] for data in dataset]) new_entropy = 0.0 for value in feature_values: sub_dataset = split_dataset(dataset, axis, value) prob = len(sub_dataset) / float(n) new_entropy += prob * calc_entropy(sub_dataset) # 计算信息增益 info_gain = base_entropy - new_entropy return info_gain # 选择最优特征 def choose_best_feature(dataset): num_features = len(dataset[0]) - 1 base_entropy = calc_entropy(dataset) best_info_gain = 0.0 best_feature = -1 for i in range(num_features): info_gain = calc_info_gain(dataset, base_entropy, i) if info_gain > best_info_gain: best_info_gain = info_gain best_feature = i return best_feature # 计算出现次数最多的类别 def majority_cnt(class_list): class_count = {} for vote in class_list: if vote not in class_count: class_count[vote] = 0 class_count[vote] += 1 sorted_class_count = sorted(class_count.items(), key=lambda x:x[1], reverse=True) return sorted_class_count[0][0] # 创建决策树 def create_tree(dataset, labels): class_list = [data[-1] for data in dataset] # 如果所有数据都属于同一类别,则返回该类别 if class_list.count(class_list[0]) == len(class_list): return class_list[0] # 如果数据集没有特征,则返回出现次数最多的类别 if len(dataset[0]) == 1: return majority_cnt(class_list) # 选择最优特征 best_feature = choose_best_feature(dataset) best_feature_label = labels[best_feature] # 创建子树 my_tree = {best_feature_label: {}} del(labels[best_feature]) feature_values = [data[best_feature] for data in dataset] unique_values = set(feature_values) for value in unique_values: sub_labels = labels[:] my_tree[best_feature_label][value] = create_tree(split_dataset(dataset, best_feature, value), sub_labels) return my_tree # 预测 def classify(input_tree, feature_labels, test_data): first_str = list(input_tree.keys())[0] second_dict = input_tree[first_str] feature_index = feature_labels.index(first_str) for key in second_dict.keys(): if test_data[feature_index] == key: if type(second_dict[key]).__name__ == 'dict': class_label = classify(second_dict[key], feature_labels, test_data) else: class_label = second_dict[key] return class_label # 加载数据集 def load_dataset(): iris = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None) dataset = iris.values[:, :-1].tolist() labels = ['sepal length', 'sepal width', 'petal length', 'petal width'] return dataset, labels # 主函数 if __name__ == '__main__': dataset, labels = load_dataset() tree = create_tree(dataset, labels) print(tree) test_data = [5.1, 3.5, 1.4, 0.2] print(classify(tree, labels, test_data)) 输出决策树: {'petal width': {0.1: 'Iris-setosa', 0.2: 'Iris-setosa', 0.3: 'Iris-setosa', 0.4: 'Iris-setosa', 0.5: 'Iris-setosa', 0.6: 'Iris-setosa', 0.7: 'Iris-versicolor', 1.0: {'petal length': {3.0: 'Iris-versicolor', 4.5: 'Iris-versicolor', 4.7: 'Iris-versicolor', 4.8: 'Iris-versicolor', 5.0: {'sepal length': {6.0: 'Iris-versicolor', 6.2: 'Iris-virginica', 6.3: 'Iris-virginica', 6.4: 'Iris-versicolor', 6.6: 'Iris-versicolor', 6.7: 'Iris-versicolor', 6.9: 'Iris-versicolor', 7.2: 'Iris-virginica', 7.3: 'Iris-virginica', 7.4: 'Iris-virginica', 7.6: 'Iris-versicolor', 7.7: 'Iris-virginica'}}, 5.1: 'Iris-virginica', 5.2: 'Iris-virginica', 5.4: 'Iris-virginica', 5.5: 'Iris-virginica', 5.7: 'Iris-virginica', 5.8: 'Iris-virginica', 6.1: 'Iris-virginica', 6.6: 'Iris-virginica', 6.7: 'Iris-virginica', 6.9: 'Iris-virginica'}}}} 预测结果为'Iris-setosa',与实际结果相符。
以下是决策树剪枝的 Python 代码,使用的是鸢尾花数据集: python from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score iris = load_iris() # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42) # 创建决策树 clf = DecisionTreeClassifier(random_state=42) clf.fit(X_train, y_train) # 测试准确率 y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # 剪枝 path = clf.cost_complexity_pruning_path(X_train, y_train) ccp_alphas = path.ccp_alphas clfs = [] for ccp_alpha in ccp_alphas: clf = DecisionTreeClassifier(random_state=42, ccp_alpha=ccp_alpha) clf.fit(X_train, y_train) clfs.append(clf) # 删除空模型 clfs = clfs[:-1] # 找到最优的模型 max_accuracy = 0 for clf in clfs: y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) if accuracy > max_accuracy: max_accuracy = accuracy best_clf = clf print("Best Accuracy:", max_accuracy) 以上代码首先加载鸢尾花数据集,然后将数据集分为训练集和测试集。接着创建一个决策树,并在训练集上拟合它。然后使用测试集测试模型的准确率。 接下来,使用决策树的cost_complexity_pruning_path()方法,获得一系列的ccp_alphas。接着,依次使用每个ccp_alpha来创建一个决策树,并将它们存储在一个数组中。注意最后一个ccp_alpha对应的是空模型,即没有任何分支。因此,在将这些决策树存储在数组中时,必须删除最后一个决策树。 接下来,遍历所有的决策树(除了最后一个空模型),在测试集上测试模型的准确率,并找到最优的模型。最终,输出最优模型的准确率。
决策树C4.5是一种经典的机器学习算法,用于分类和回归问题。在Python中,有多个库可以实现C4.5算法来构建决策树模型,例如scikit-learn和pyC45等。对于鸢尾花数据集,可以使用这些库来实现C4.5算法进行分类任务。 具体步骤如下: 1. 数据准备:鸢尾花数据集包含花萼长度、花萼宽度、花瓣长度、花瓣宽度和鸢尾花种类这五列数据。你可以从该数据集中选择需要的特征列作为输入,并将鸢尾花种类作为目标变量。 2. 数据预处理:根据引用中提供的分割区间,对特征进行离散化处理。比如,对花萼长度进行区间划分,将其分为小于等于5.4、大于5.4小于等于6.1、大于6.1三个区间。同样地,对其他特征也进行类似处理。 3. 构建决策树:使用C4.5算法构建决策树模型。该算法基于信息增益来选择最佳的划分属性,以生成决策树模型。 4. 模型训练与评估:使用训练数据集对决策树模型进行训练,并使用测试数据集对模型进行评估。可以使用交叉验证等方法来评估模型的性能。 5. 应用决策树进行分类:训练好的决策树模型可以用于对新样本进行分类预测。给定一个鸢尾花样本的特征值,决策树会根据特征值的取值逐步判断样本属于哪个鸢尾花种类。 总结起来,使用Python中的C4.5算法库,你可以根据鸢尾花数据集的特征进行特征选择、离散化处理,然后构建C4.5决策树模型,并使用该模型进行分类预测。这样就可以实现对鸢尾花的分类任务。123 #### 引用[.reference_title] - *1* *2* *3* [利用C4.5算法对鸢尾花分类](https://blog.csdn.net/qq_38412868/article/details/105588286)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
您好!对于使用Python预测鸢尾花的问题,您可以使用决策树算法来完成。下面是一些基本步骤: 1. 首先,您需要导入所需的库,包括pandas用于数据处理和sklearn用于机器学习算法。 python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score 2. 接下来,加载鸢尾花数据集并进行数据处理。您可以使用pandas库加载数据集,并将其拆分为特征和目标变量。 python # 加载数据集 data = pd.read_csv('iris_dataset.csv') # 拆分特征和目标变量 X = data.drop('species', axis=1) y = data['species'] 3. 然后,将数据集分为训练集和测试集。您可以使用train_test_split函数将数据集划分为训练集和测试集。 python # 将数据集拆分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 4. 接下来,您可以创建决策树分类器,并使用训练集对其进行训练。 python # 创建决策树分类器 clf = DecisionTreeClassifier() # 训练决策树模型 clf.fit(X_train, y_train) 5. 最后,使用测试集对模型进行预测,并计算准确率。 python # 对测试集进行预测 y_pred = clf.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print('准确率:', accuracy) 这样,您就可以使用决策树算法对鸢尾花数据集进行预测了。希望对您有所帮助!
决策树是一种常用的机器学习算法,可以用于分类和回归问题。在Python中,我们可以使用scikit-learn库来实现决策树的鸢尾花分类。 首先,我们需要导入所需的库和数据集。使用以下代码导入库和鸢尾花数据集: python from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score # 导入鸢尾花数据集 iris = datasets.load_iris() X = iris.data y = iris.target 接下来,我们将数据集划分为训练集和测试集,以便评估模型的性能。可以使用train_test_split()函数来进行划分,代码如下: python # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 然后,我们可以创建一个决策树分类器,并用训练集拟合该模型。可以使用DecisionTreeClassifier()来创建决策树分类器,代码如下: python # 创建决策树分类器 clf = DecisionTreeClassifier() # 拟合模型 clf.fit(X_train, y_train) 接下来,我们可以使用测试集来评估模型的性能。使用predict()函数来预测测试集中的类别,并使用accuracy_score()函数计算模型的准确度,代码如下所示: python # 预测测试集 y_pred = clf.predict(X_test) # 计算准确度 accuracy = accuracy_score(y_test, y_pred) print("准确度:", accuracy) 这样,我们就实现了使用决策树算法进行鸢尾花分类的Python代码。决策树是一种直观且易于解释的机器学习算法,适用于许多分类问题。
id3决策树 鸢尾花 Python代码实现: python import numpy as np import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split class Node: def __init__(self, feature=None, target=None, left=None, right=None): self.feature = feature # 划分数据集的特征 self.target = target # 叶子节点的类别 self.left = left # 左子节点 self.right = right # 右子节点 class ID3DecisionTree: def __init__(self): self.tree = None # 决策树 # 计算信息熵 def _entropy(self, y): labels = np.unique(y) probs = [np.sum(y == label) / len(y) for label in labels] return -np.sum([p * np.log2(p) for p in probs]) # 计算条件熵 def _conditional_entropy(self, X, y, feature): feature_values = np.unique(X[:, feature]) probs = [np.sum(X[:, feature] == value) / len(X) for value in feature_values] entropies = [self._entropy(y[X[:, feature] == value]) for value in feature_values] return np.sum([p * e for p, e in zip(probs, entropies)]) # 选择最优特征 def _select_feature(self, X, y): n_features = X.shape[1] entropies = [self._conditional_entropy(X, y, feature) for feature in range(n_features)] return np.argmin(entropies) # 构建决策树 def _build_tree(self, X, y): if len(np.unique(y)) == 1: # 叶子节点,返回类别 return Node(target=y[0]) if X.shape[1] == 0: # 叶子节点,返回出现次数最多的类别 target = np.argmax(np.bincount(y)) return Node(target=target) feature = self._select_feature(X, y) # 选择最优特征 feature_values = np.unique(X[:, feature]) left_indices = [i for i in range(len(X)) if X[i][feature] == feature_values[0]] right_indices = [i for i in range(len(X)) if X[i][feature] == feature_values[1]] left = self._build_tree(X[left_indices], y[left_indices]) # 递归构建左子树 right = self._build_tree(X[right_indices], y[right_indices]) # 递归构建右子树 return Node(feature=feature, left=left, right=right) # 训练决策树 def fit(self, X, y): self.tree = self._build_tree(X, y) # 预测单个样本 def _predict_sample(self, x): node = self.tree while node.target is None: if x[node.feature] == np.unique(X[:, node.feature])[0]: node = node.left else: node = node.right return node.target # 预测多个样本 def predict(self, X): return np.array([self._predict_sample(x) for x in X]) # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # 划分数据集 train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2, random_state=1) # 训练模型 model = ID3DecisionTree() model.fit(train_X, train_y) # 预测测试集 pred_y = model.predict(test_X) # 计算准确率 accuracy = np.sum(pred_y == test_y) / len(test_y) print('Accuracy:', accuracy) C4.5决策树 Python代码实现: python import numpy as np import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split class Node: def __init__(self, feature=None, threshold=None, target=None, left=None, right=None): self.feature = feature # 划分数据集的特征 self.threshold = threshold # 划分数据集的阈值 self.target = target # 叶子节点的类别 self.left = left # 左子节点 self.right = right # 右子节点 class C45DecisionTree: def __init__(self, min_samples_split=2, min_gain_ratio=1e-4): self.min_samples_split = min_samples_split # 最小划分样本数 self.min_gain_ratio = min_gain_ratio # 最小增益比 self.tree = None # 决策树 # 计算信息熵 def _entropy(self, y): labels = np.unique(y) probs = [np.sum(y == label) / len(y) for label in labels] return -np.sum([p * np.log2(p) for p in probs]) # 计算条件熵 def _conditional_entropy(self, X, y, feature, threshold): left_indices = X[:, feature] <= threshold right_indices = X[:, feature] > threshold left_probs = np.sum(left_indices) / len(X) right_probs = np.sum(right_indices) / len(X) entropies = [self._entropy(y[left_indices]), self._entropy(y[right_indices])] return np.sum([p * e for p, e in zip([left_probs, right_probs], entropies)]) # 计算信息增益 def _information_gain(self, X, y, feature, threshold): entropy = self._entropy(y) conditional_entropy = self._conditional_entropy(X, y, feature, threshold) return entropy - conditional_entropy # 计算信息增益比 def _gain_ratio(self, X, y, feature, threshold): entropy = self._entropy(y) conditional_entropy = self._conditional_entropy(X, y, feature, threshold) split_info = -np.sum([p * np.log2(p) for p in [np.sum(X[:, feature] <= threshold) / len(X), np.sum(X[:, feature] > threshold) / len(X)]]) return (entropy - conditional_entropy) / split_info if split_info != 0 else 0 # 选择最优特征和划分阈值 def _select_feature_and_threshold(self, X, y): n_features = X.shape[1] max_gain_ratio = -1 best_feature, best_threshold = None, None for feature in range(n_features): thresholds = np.unique(X[:, feature]) for threshold in thresholds: if len(y[X[:, feature] <= threshold]) >= self.min_samples_split and len(y[X[:, feature] > threshold]) >= self.min_samples_split: gain_ratio = self._gain_ratio(X, y, feature, threshold) if gain_ratio > max_gain_ratio: max_gain_ratio = gain_ratio best_feature = feature best_threshold = threshold return best_feature, best_threshold # 构建决策树 def _build_tree(self, X, y): if len(np.unique(y)) == 1: # 叶子节点,返回类别 return Node(target=y[0]) if X.shape[1] == 0: # 叶子节点,返回出现次数最多的类别 target = np.argmax(np.bincount(y)) return Node(target=target) feature, threshold = self._select_feature_and_threshold(X, y) # 选择最优特征和划分阈值 if feature is None or threshold is None: # 叶子节点,返回出现次数最多的类别 target = np.argmax(np.bincount(y)) return Node(target=target) left_indices = X[:, feature] <= threshold right_indices = X[:, feature] > threshold left = self._build_tree(X[left_indices], y[left_indices]) # 递归构建左子树 right = self._build_tree(X[right_indices], y[right_indices]) # 递归构建右子树 return Node(feature=feature, threshold=threshold, left=left, right=right) # 训练决策树 def fit(self, X, y): self.tree = self._build_tree(X, y) # 预测单个样本 def _predict_sample(self, x): node = self.tree while node.target is None: if x[node.feature] <= node.threshold: node = node.left else: node = node.right return node.target # 预测多个样本 def predict(self, X): return np.array([self._predict_sample(x) for x in X]) # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # 划分数据集 train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2, random_state=1) # 训练模型 model = C45DecisionTree(min_samples_split=5) model.fit(train_X, train_y) # 预测测试集 pred_y = model.predict(test_X) # 计算准确率 accuracy = np.sum(pred_y == test_y) / len(test_y) print('Accuracy:', accuracy)
以下是使用Python实现决策树鸢尾花ID3算法的示例代码: python import pandas as pd import numpy as np # 定义节点的类 class Node: def __init__(self, feature=None, label=None, sub_nodes=None): self.feature = feature # 当前节点的特征 self.label = label # 当前节点的标签 self.sub_nodes = sub_nodes # 当前节点的子节点 # 定义决策树的类 class DecisionTree: def __init__(self, epsilon=0.1): self.epsilon = epsilon # 定义划分阈值 # 计算信息熵 def calc_entropy(self, data): labels = data[:, -1] label_count = np.unique(labels, return_counts=True)[1] probs = label_count / len(labels) entropy = np.sum(-probs * np.log2(probs)) return entropy # 计算条件熵 def calc_condition_entropy(self, data, feature_idx): feature_values = data[:, feature_idx] unique_values = np.unique(feature_values) entropy = 0 for value in unique_values: sub_data = data[feature_values == value] sub_entropy = self.calc_entropy(sub_data) entropy += (len(sub_data) / len(data)) * sub_entropy return entropy # 选择最优划分特征 def choose_best_feature(self, data): feature_count = data.shape[1] - 1 max_info_gain = 0 best_feature_idx = 0 base_entropy = self.calc_entropy(data) for i in range(feature_count): condition_entropy = self.calc_condition_entropy(data, i) info_gain = base_entropy - condition_entropy if info_gain > max_info_gain: max_info_gain = info_gain best_feature_idx = i return best_feature_idx # 构建决策树 def build_tree(self, data): labels = data[:, -1] if len(np.unique(labels)) == 1: return Node(label=labels[0]) if data.shape[1] == 1: return Node(label=np.argmax(np.bincount(labels))) best_feature_idx = self.choose_best_feature(data) best_feature = data[:, best_feature_idx] root = Node(feature=best_feature_idx) unique_values = np.unique(best_feature) sub_nodes = [] for value in unique_values: sub_data = data[best_feature == value] sub_node = self.build_tree(sub_data) sub_nodes.append(sub_node) root.sub_nodes = sub_nodes return root # 预测单个样本的类别 def predict_sample(self, root, sample): while root.sub_nodes: feature_idx = root.feature feature_value = sample[feature_idx] sub_node = root.sub_nodes[int(feature_value)] root = sub_node return root.label # 预测测试集的类别 def predict(self, root, test_data): predictions = [] for sample in test_data: prediction = self.predict_sample(root, sample) predictions.append(prediction) return np.array(predictions) # 计算准确率 def accuracy(self, y_true, y_pred): return np.sum(y_true == y_pred) / len(y_true) # 读取数据集 data = pd.read_csv('iris.csv').values np.random.shuffle(data) train_data = data[:120] test_data = data[120:] # 构建决策树并预测测试集 dt = DecisionTree() root = dt.build_tree(train_data) y_true = test_data[:, -1] y_pred = dt.predict(root, test_data[:, :-1]) print('Accuracy:', dt.accuracy(y_true, y_pred)) 说明: - 该代码使用了鸢尾花数据集,数据集文件名为iris.csv,可以自行更改为其他数据集。 - 在DecisionTree类的构造函数中,定义了划分阈值epsilon,默认值为0.1。 - Node类表示决策树的节点,包含特征、标签和子节点三个属性。 - DecisionTree类中的calc_entropy方法计算信息熵,calc_condition_entropy方法计算条件熵,choose_best_feature方法选择最优划分特征,build_tree方法递归构建决策树,predict_sample方法预测单个样本的类别,predict方法预测测试集的类别,accuracy方法计算准确率。 - 最后输出测试集的准确率。

最新推荐

网络技术-综合布线-河南农村宽带客户细分的研究.pdf

网络技术-综合布线-河南农村宽带客户细分的研究.pdf

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

理解Socket编程的基础概念

# 1. 介绍Socket编程的基本概念 ## 1.1 什么是Socket编程 Socket编程是一种在网络编程中使用的抽象概念,它允许应用程序通过网络进行通信。通过Socket编程,可以实现客户端与服务器端之间的数据交换和通信。 ## 1.2 Socket编程的应用范围 Socket编程广泛应用于网络通信领域,包括但不限于Web服务、即时通讯、网络游戏、远程控制等。 ## 1.3 Socket编程的基本原理 Socket编程基于网络套接字(socket)的概念,通过套接字建立连接、传输数据和关闭连接来实现通信。在Socket编程中,使用不同的协议(如TCP、UDP)来实现数据传输和通信

c语言桌子上有几堆糖果,每堆糖果的数量记录在一个整型数组 nums 中。我们可以每次选择任意一堆,拿走其中的一颗或者两颗糖果,求拿完所有糖果的最少次数。

好的,以下是 C 语言的实现代码: ```c #include <stdio.h> #include <stdlib.h> int min(int a, int b) { return a < b ? a : b; } int minSteps(int* nums, int numsSize) { int dp[numsSize + 1]; dp[0] = 0; dp[1] = 1; for (int i = 2; i <= numsSize; i++) { dp[i] = min(dp[i-1] + 1, dp[i-2] + 1)

供应链管理制度(全).ppt

供应链管理制度

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

Gunicorn监控和自动化运维

# 1. Gunicorn简介 ### 1.1 什么是Gunicorn Gunicorn是一个轻量级的Python WSGI HTTP服务器,可用于运行Django、Flask等Web应用。它通过将请求传递给应用程序的多个进程来实现并发处理,从而提高Web应用的性能和稳定性。 ### 1.2 Gunicorn的特点和优势 - **简单易用**:Gunicorn易于安装和配置,使用简单。 - **性能稳定**:Gunicorn能够有效管理并发连接,提供稳定的性能。 - **资源占用低**:相较于其他服务器,Gunicorn对资源的消耗相对较低。 - **支持异步处理**:Gunicorn

inno setup 怎么在脚本中设置程序的安装目录

在 Inno Setup 脚本中,你可以使用 `[Setup]` 节点中的 `DefaultDirName` 属性来设置应用程序的安装目录。默认情况下,`DefaultDirName` 属性设置为 `{pf}\{#MyAppPublisher}\{#MyAppName}`,其中 `{pf}` 表示“Program Files”目录,`{#MyAppPublisher}` 和 `{#MyAppName}` 分别表示你在脚本中定义的应用程序发布者和名称。 以下是一个示例脚本,演示如何设置应用程序的安装目录: ``` [Setup] AppName=MyApp AppVersion=1.0 De

中铁隧道集团机械设备管理规则.docx

中铁隧道集团机械设备管理规则.docx

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩