把文中代码详细改写成python代码
时间: 2024-12-01 07:08:55 浏览: 13
将MATLAB代码转换为Python代码涉及多个步骤,包括导入必要的库、调整语法和逻辑结构。以下是详细的Python版本代码:
```python
import numpy as np
import random
from scipy.spatial.distance import pdist, squareform
def myfun(x):
# 定义目标函数
pass
def DIST(x1, y1, x2, y2):
return ((x1 - x2)**2 + (y1 - y2)**2)**0.5
def CreateEmptyParticle(nPop):
particles = [{'Velocity': None, 'Position': None, 'Cost': None,
'Best': {'Position': None, 'Cost': None}} for _ in range(nPop)]
return particles
def DetermineDomination(particles):
for p in particles:
p['dominated'] = False
for q in particles:
if all(p['Cost'] <= q['Cost']) and any(p['Cost'] < q['Cost']):
p['dominated'] = True
break
return particles
def GetNonDominatedParticles(particles):
non_dominated = [p for p in particles if not p.get('dominated', False)]
return non_dominated
def GetCosts(particles):
costs = np.array([p['Cost'] for p in particles]).T
return costs
def CreateHypercubes(costs, nGrid, alpha):
min_cost = np.min(costs, axis=1)
max_cost = np.max(costs, axis=1)
step = (max_cost - min_cost) / nGrid
hypercubes = []
for i in range(nGrid):
for j in range(nGrid):
hypercubes.append({
'index': (i, j),
'sub_index': (i * nGrid + j),
'particles': []
})
return hypercubes, min_cost, max_cost, step
def GetGridIndex(particle, G, min_cost, max_cost, step):
cost = particle['Cost']
grid_index = tuple(((cost - min_cost) // step).astype(int))
sub_index = grid_index[0] * len(G) + grid_index[1]
return grid_index, sub_index
def SelectLeader(rep, beta):
leader = random.choices(rep, weights=[r['Cost'][0]**beta for r in rep], k=1)[0]
return leader
def DeleteFromRep(rep, EXTRA, gamma):
to_delete = random.sample(range(len(rep)), EXTRA)
rep = [rep[i] for i in range(len(rep)) if i not in to_delete]
return rep
def Mutate(position, pm, VarMin, VarMax):
mutated_position = position.copy()
for i in range(len(mutated_position)):
if random.random() < pm:
mutated_position[i] = random.uniform(VarMin, VarMax)
return mutated_position
def operator_3(position, start, stop, flag):
new_position = position.copy()
if flag == 1:
new_position[start:stop] = np.flip(new_position[start:stop])
elif flag == 2:
new_position[start:stop] = np.roll(new_position[start:stop], 1)
elif flag == 3:
new_position[start:stop] = np.roll(new_position[start:stop], -1)
return new_position
def Dominates(p, q):
return all(p['Cost'] <= q['Cost']) and any(p['Cost'] < q['Cost'])
def main():
clc(); clear(); close_all()
CostFunction = lambda x: myfun(x)
WPc = 16 # 建筑废料生成地点数量
RCc = 6 # 回收中心数量
MMc = 4 # 再生厂商数量
nVar = RCc + RCc * WPc + MMc + MMc * RCc # 决策变量个数
VarSize = [1, nVar] # 决策变量矩阵大小
VarMin = 0 # 变量下界
VarMax = 1 # 变量上界
VelMax = (VarMax - VarMin) / 5 # 粒子速度步长极限
# MOPSO 设置
MaxIt = 200 # 最大迭代次数
nPop = 100 # 种群大小
nRep = 100 # 存储规模
w = 0.5 # 惯性权重
wdamp = 0.99 # 惯性权重衰减率
c1 = 1 # 个人学习系数
c2 = 2 # 全局学习系数
nGrid = 7 # 每个维度的栅格数
alpha = 0.1 # 膨胀系数
beta = 2 # 领导者选择压力
gamma = 2 # 删除选择压力
mu = 0.1 # 变异率
# 初始化
wmax = 0.9
wmin = 0.4
# 混沌部分
u0 = 0.5
y0 = 0.5
U_s = [u0]
for i in range(2 * MaxIt - 1):
y = np.cos(np.pi * 2 * u0) + y0 * np.exp(-3)
u = (u0 + 400 + 12 * y) - np.floor(u0 + 400 + 12 * y)
u0 = u
y0 = y
U_s.append(u0)
particles = CreateEmptyParticle(nPop)
for i in range(nPop):
particles[i]['Velocity'] = np.random.uniform(VarMin, VarMax, VarSize)
particles[i]['Position'] = np.random.uniform(VarMin, VarMax, VarSize)
fit, pp = CostFunction(particles[i]['Position'])
particles[i]['Position'] = pp
particles[i]['Cost'] = fit.T
particles[i]['Best']['Position'] = particles[i]['Position'].copy()
particles[i]['Best']['Cost'] = particles[i]['Cost'].copy()
particles = DetermineDomination(particles)
rep = GetNonDominatedParticles(particles)
rep_costs = GetCosts(rep)
G, min_cost, max_cost, step = CreateHypercubes(rep_costs, nGrid, alpha)
for i in range(len(rep)):
rep[i]['GridIndex'], rep[i]['GridSubIndex'] = GetGridIndex(rep[i], G, min_cost, max_cost, step)
# MOPSO 主循环
for it in range(1, MaxIt + 1):
w = wmax - ((wmax - wmin) / MaxIt) * it
for i in range(nPop):
rep_h = SelectLeader(rep, beta)
index = random.sample(range(2 * MaxIt), 2)
particles[i]['Velocity'] = (w * particles[i]['Velocity'] +
c1 * U_s[index[0]] * (particles[i]['Best']['Position'] - particles[i]['Position']) +
c2 * U_s[index[1]] * (rep_h['Position'] - particles[i]['Position']))
particles[i]['Velocity'] = np.clip(particles[i]['Velocity'], -VelMax, VelMax)
particles[i]['Position'] += particles[i]['Velocity']
flag = (particles[i]['Position'] < VarMin) | (particles[i]['Position'] > VarMax)
particles[i]['Velocity'][flag] = -particles[i]['Velocity'][flag]
particles[i]['Position'] = np.clip(particles[i]['Position'], VarMin, VarMax)
fit, pp = CostFunction(particles[i]['Position'])
particles[i]['Position'] = pp
particles[i]['Cost'] = fit.T
if random.random() < mu:
flag = random.randint(1, 3)
NewSol = {'Position': operator_3(particles[i]['Position'], 1, nVar, flag)}
fit, pp = CostFunction(NewSol['Position'])
NewSol['Position'] = pp
NewSol['Cost'] = fit.T
if Dominates(NewSol, particles[i]):
particles[i]['Position'] = NewSol['Position']
particles[i]['Cost'] = NewSol['Cost']
elif Dominates(particles[i], NewSol):
pass
else:
if random.random() < 0.5:
particles[i]['Position'] = NewSol['Position']
particles[i]['Cost'] = NewSol['Cost']
if Dominates(particles[i], particles[i]['Best']):
particles[i]['Best']['Position'] = particles[i]['Position'].copy()
particles[i]['Best']['Cost'] = particles[i]['Cost'].copy()
elif not Dominates(particles[i]['Best'], particles[i]):
if random.random() < 0.5:
particles[i]['Best']['Position'] = particles[i]['Position'].copy()
particles[i]['Best']['Cost'] = particles[i]['Cost'].copy()
particles = DetermineDomination(particles)
nd_particles = GetNonDominatedParticles(particles)
rep.extend(nd_particles)
rep = DetermineDomination(rep)
rep = GetNonDominatedParticles(rep)
for i in range(len(rep)):
rep[i]['GridIndex'], rep[i]['GridSubIndex'] = GetGridIndex(rep[i], G, min_cost, max_cost, step)
if len(rep) > nRep:
EXTRA = len(rep) - nRep
rep = DeleteFromRep(rep, EXTRA, gamma)
rep_costs = GetCosts(rep)
G, min_cost, max_cost, step = CreateHypercubes(rep_costs, nGrid, alpha)
print(f'IMOPSO Iteration {it}: Number of Repository Particles = {len(rep)}')
# 结果
costs = GetCosts(particles)
rep_costs = GetCosts(rep)
import matplotlib.pyplot as plt
plt.plot(rep_costs[1, :], rep_costs[0, :], 'ro')
plt.grid(True)
plt.show()
if __name__ == "__main__":
main()
```
### 说明
1. **导入必要的库**:使用 `numpy` 和 `random` 处理数值和随机操作,使用 `scipy.spatial.distance` 计算距离。
2. **定义辅助函数**:如 `DIST`, `CreateEmptyParticle`, `DetermineDomination`, `GetNonDominatedParticles`, `GetCosts`, `CreateHypercubes`, `GetGridIndex`, `SelectLeader`, `DeleteFromRep`, `Mutate`, `operator_3`, `Dominates`。
3. **主函数 `main`**:包含主要的算法逻辑,初始化参数,生成初始种群,执行 MOPSO 主循环,绘制结果。
4. **目标函数 `myfun`**:需要根据具体问题定义。
请根据实际需求进一步完善和调试代码。
阅读全文