用python写一个程序,用遗传算法解决旅行商问题
时间: 2024-09-15 16:10:35 浏览: 38
TSP_python_遗传算法求旅行商问题_
5星 · 资源好评率100%
在Python中,我们可以利用遗传算法(Genetic Algorithm,GA)来解决旅行商问题(Traveling Salesman Problem,TSP)。这是一个经典的组合优化问题,目标是找到从一系列城市出发、访问每个城市一次并返回起点的最短路径。
下面是一个简单的遗传算法实现旅行商问题的例子:
```python
import random
from deap import base, creator, tools
# 初始化问题数据
def create_city_list(num_cities):
cities = [(i, i * 5 + random.randint(0, 100)) for i in range(num_cities)]
return cities
# 计算两个城市的距离
def distance(city1, city2):
x1, y1 = city1
x2, y2 = city2
return ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 0.5
# 遗传算法核心部分
def genetic_algorithm(cities, pop_size=50, gen_num=100, mutation_rate=0.01):
# 定义染色体(解空间)
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
toolbox = base.Toolbox()
toolbox.register("individual", tools.initCycle, creator.Individual,
lambda: [random.choice(cities) for _ in range(len(cities)-1)],
n=pop_size)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", evaluate_tsp, cities=cities)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutShuffleIndexes, indpb=mutation_rate)
toolbox.register("select", tools.selTournament, tournsize=3)
population = toolbox.population()
fitnesses = map(toolbox.evaluate, population)
for ind, fit in zip(population, fitnesses):
ind.fitness.values = fit
for g in range(gen_num):
offspring = toolbox.select(population, len(population))
offspring = [toolbox.clone(ind) for ind in offspring]
for child1, child2 in zip(offspring[::2], offspring[1::2]):
if random.random() < 0.7:
toolbox.mate(child1, child2)
del child1.fitness.values
del child2.fitness.values
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
population[:] = offspring
best_solution = min(population, key=lambda individual: individual.fitness.values)
return best_solution, best_solution.fitness.values[0]
# 评估函数,计算解决方案的成本
def evaluate_tsp(individual, cities):
total_distance = sum(distance(cities[i], cities[i+1]) for i in range(len(individual)))
total_distance += distance(cities[-1], cities[0])
return total_distance,
# 示例使用
num_cities = 10
cities = create_city_list(num_cities)
solution, cost = genetic_algorithm(cities)
print(f"最优解:{solution},总成本:{cost}")
阅读全文