遗传算法解决旅行商问题python实现的源代码
时间: 2024-08-12 10:00:54 浏览: 51
遗传算法是一种模拟自然选择过程的优化搜索技术,常用于求解复杂问题。旅行商问题(Traveling Salesman Problem, TSP),是一个著名的组合优化问题,目标是最短路径覆盖所有城市一次并返回起点。
在Python中实现遗传算法解决TSP问题的一般步骤包括:
1. 初始化种群:创建一组随机的旅行商路线作为初始解(个体)。
2. 计算适应度:计算每个路线的总长度(旅行距离),适应度通常就是这个长度的倒数。
3. 选择操作:基于适应度选择部分个体进入下一轮,常用的方式有轮盘赌选择法、锦标赛选择等。
4. 变异操作:对选中的个体应用变异,比如交换两个城市的位置,保持线路的整体结构不变。
5. 进化:重复选择和变异过程,直到达到指定的迭代次数或者找到满意的解。
6. 输出最优解:记录并返回最佳路线(最短路径)。
以下是一个简单的Python遗传算法TSP示例代码片段(简化版,实际代码可能更复杂):
```python
import random
import numpy as np
class Individual:
# ...
def create_population(size):
return [Individual() for _ in range(size)]
def fitness(individual):
# 计算旅行商问题的总距离
return 1 / individual.distance
def selection(population, fitness_scores):
# 轮盘赌选择
total_fitness = sum(fitness_scores)
return [population[i] for i in np.random.choice(len(population), size=len(population), p=fitness_scores / total_fitness)]
def crossover(parents):
# 双点交叉
child1 = parents.copy()
child2 = parents.copy()
point1 = random.randint(1, len(child1.cities) - 1)
point2 = random.randint(point1 + 1, len(child1.cities))
child1.cities[point1:point2], child2.cities[point1:point2] = child2.cities[point1:point2], child1.cities[point1:point2]
return [child1, child2]
def mutation(individual):
# 突变,例如交换两点位置
swap_index1 = random.randint(0, len(individual.cities) - 1)
swap_index2 = random.randint(swap_index1 + 1, len(individual.cities))
individual.cities[swap_index1], individual.cities[swap_index2] = individual.cities[swap_index2], individual.cities[swap_index1]
# 主程序循环
pop_size, generations = ..., ...
population = create_population(pop_size)
for _ in range(generations):
fitness_scores = [fitness(ind) for ind in population]
elite = selection(population, fitness_scores)
offspring = crossover(elite[:int(0.7*pop_size)])
mutated_offspring = [mutation(ind) for ind in offspring]
population = elite + mutated_offspring
best_solution = min(population, key=fitness)
```
阅读全文