遗传算法解决旅行商问题python代码
时间: 2024-06-03 08:06:04 浏览: 172
遗传算法是一种基于生物进化思想的优化算法,可以应用于求解旅行商问题。下面是使用Python实现遗传算法求解旅行商问题的代码示例:
```
import numpy as np
import random
# 定义旅行商问题类
class TSP():
def __init__(self, city_num, city_position):
self.city_num = city_num # 城市数量
self.city_position = city_position # 城市位置
self.distance = self.calc_distance() # 城市间距离矩阵
# 计算城市间距离矩阵
def calc_distance(self):
distance = np.zeros((self.city_num, self.city_num))
for i in range(self.city_num):
for j in range(i+1, self.city_num):
distance[i][j] = np.sqrt((self.city_position[i]-self.city_position[j])**2 + (self.city_position[i]-self.city_position[j])**2)
distance[j][i] = distance[i][j]
return distance
# 计算路径长度
def calc_path_length(self, path):
length = 0
for i in range(self.city_num-1):
length += self.distance[path[i]][path[i+1]]
length += self.distance[path[self.city_num-1]][path]
return length
# 随机生成初始种群
def generate_population(self, pop_size):
population = []
for i in range(pop_size):
path = list(range(self.city_num))
random.shuffle(path)
population.append(path)
return population
# 选择
def selection(self, population, fitness):
idx1 = random.randint(0, len(population)-1)
idx2 = random.randint(0, len(population)-1)
if fitness[idx1] < fitness[idx2]:
return population[idx1]
else:
return population[idx2]
# 交叉
def crossover(self, parent1, parent2):
child = [-1]*self.city_num
start_idx = random.randint(0, self.city_num-1)
end_idx = random.randint(0, self.city_num-1)
if start_idx > end_idx:
start_idx, end_idx = end_idx, start_idx
for i in range(start_idx, end_idx+1):
child[i] = parent1[i]
idx = end_idx+1
for i in range(self.city_num):
if idx == self.city_num:
idx = 0
if parent2[i] not in child:
child[idx] = parent2[i]
idx += 1
return child
# 变异
def mutation(self, path):
idx1 = random.randint(0, self.city_num-1)
idx2 = random.randint(0, self.city_num-1)
path[idx1], path[idx2] = path[idx2], path[idx1]
# 遗传算法求解旅行商问题
def GA_solve(self, pop_size, elite_rate=0.2, crossover_rate=0.8, mutation_rate=0.05, max_iter=100):
population = self.generate_population(pop_size)
fitness = [self.calc_path_length(path) for path in population]
best_fitness = min(fitness)
best_path = population[fitness.index(best_fitness)]
elite_size = int(pop_size*elite_rate)
for iter in range(max_iter):
# 选择精英种群
elite_population = []
elite_fitness = []
elite_index = np.argsort(fitness)[:elite_size]
for idx in elite_index:
elite_population.append(population[idx])
elite_fitness.append(fitness[idx])
# 生成新种群
new_population = []
new_population.extend(elite_population)
while len(new_population) < pop_size:
parent1 = self.selection(population, fitness)
if random.random() < crossover_rate:
parent2 = self.selection(population, fitness)
child = self.crossover(parent1, parent2)
else:
child = parent1[:]
if random.random() < mutation_rate:
self.mutation(child)
new_population.append(child)
# 计算新种群适应度
new_fitness = [self.calc_path_length(path) for path in new_population]
# 更新最优解
if min(new_fitness) < best_fitness:
best_fitness = min(new_fitness)
best_path = new_population[new_fitness.index(best_fitness)]
# 替换种群
fitness.extend(new_fitness)
population.extend(new_population)
idxs = np.argsort(fitness)[:pop_size]
population = [population[idx] for idx in idxs]
fitness = [fitness[idx] for idx in idxs]
return best_path, best_fitness
# 测试代码
if __name__ == '__main__':
city_num = 10 # 城市数量
city_position = np.random.rand(city_num, 2) # 城市位置随机生成
tsp = TSP(city_num, city_position)
best_path, best_fitness = tsp.GA_solve(pop_size=100, max_iter=500)
print("最优路径:", best_path)
print("最优解:", best_fitness)
```
阅读全文