lstm预测pytorch
时间: 2023-09-08 07:08:35 浏览: 78
对于使用LSTM进行预测的PyTorch代码,您可以按照以下步骤进行:
1. 导入所需的库:
```python
import torch
import torch.nn as nn
```
2. 定义LSTM模型类:
```python
class LSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(LSTMModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
```
3. 实例化模型,定义损失函数和优化器:
```python
input_size = ... # 输入特征维度
hidden_size = ... # 隐藏层维度
num_layers = ... # LSTM层数
output_size = ... # 输出维度
model = LSTMModel(input_size, hidden_size, num_layers, output_size)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
```
4. 准备输入数据和目标数据,并进行训练:
```python
num_epochs = ... # 训练轮数
for epoch in range(num_epochs):
# 前向传播
outputs = model(inputs)
loss = criterion(outputs, targets)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 100 == 0:
print(f'Epoch: {epoch+1}/{num_epochs}, Loss: {loss.item():.4f}')
```
这是一个简单的LSTM预测的PyTorch代码示例,您可以根据您的具体需求进行修改和扩展。
阅读全文