用Numpy 与 Matplotlib生成一个四维数组 `(shape:2*3*4*5),内容是从1到120固定顺序的120个数 ,以后两维度为单位,计算它们的和
时间: 2024-10-09 10:12:04 浏览: 40
在Python中,我们可以使用NumPy库创建一个四维数组,并使用Matplotlib仅用于数据可视化,因为其主要用于二维和三维图形。首先,我们创建四维数组并填充从1到120的数值,然后计算指定大小块的和。以下是步骤:
```python
import numpy as np
# 创建一个2x3x4x5的四维数组
arr = np.arange(1, 121).reshape((2, 3, 4, 5))
# 计算每两个维度组成的块的总和
slices = arr.reshape(-1, arr.shape[-2] * arr.shape[-1])
block_sums = slices.sum(axis=1)
print("四维数组:")
print(arr)
print("\n每个2x4块的和:")
print(block_sums)
# 使用Matplotlib展示数据,这里仅作示意,因为我们通常不会用Matplotlib处理数值计算结果
import matplotlib.pyplot as plt
# 可视化部分,由于是数值结果,通常会用直方图、散点图等,而不是简单的线图
plt.figure()
plt.hist(block_sums, bins=range(1, block_sums.max() + 1), rwidth=0.8)
plt.xlabel('块和')
plt.ylabel('频次')
plt.title('块和分布')
plt.show()
相关问题
python生成一个函数,其功能为取出名为temperaturea的numpy数组的任意一个角部元素,以及第一列和第一行最中间元素,内部最中间元素,若为偶数则取两个数字的平均值,并以上述四个数字生成折线图。
可以创建一个名为`generate_line_chart`的函数来完成这个任务。首先需要安装matplotlib库,如果没有安装,可以使用pip安装:
```bash
pip install matplotlib
```
然后编写函数如下:
```python
import numpy as np
import matplotlib.pyplot as plt
def generate_line_chart(temperaturea):
# 检查输入是否为NumPy数组
if not isinstance(temperaturea, np.ndarray):
raise ValueError("Input must be a NumPy array")
# 确保数组是二维的
if len(temperaturea.shape) != 2:
raise ValueError("Array must be 2D")
# 提取角部、第一列和第一行中间元素
corner_value = temperaturea[0, 0]
first_row_middle = temperaturea[int(len(temperaturea) / 2), 0]
first_column_middle = temperaturea[0, int(len(temperaturea[0]) / 2)]
if temperaturea.shape[1] % 2 == 0: # 判断列是否为偶数
inner_middle = (temperaturea[int(len(temperaturea) / 2), int(len(temperaturea[0]) / 2)] +
temperaturea[int(len(temperaturea) / 2) - 1, int(len(temperaturea[0]) / 2)]) / 2
else:
inner_middle = temperaturea[int(len(temperaturea) / 2), int(len(temperaturea[0]) / 2)]
# 创建数据列表
data_points = [corner_value, first_row_middle, first_column_middle, inner_middle]
# 绘制折线图
plt.plot(range(1, len(data_points) + 1), data_points)
plt.xlabel('Index')
plt.ylabel('Temperature Value')
plt.title('Line Chart of Selected Elements')
plt.grid(True)
plt.show()
# 调用函数并传入temperaturea数组
temperaturea_example = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # 示例数据
generate_line_chart(temperaturea_example)
```
from scipy.io import loadmat import numpy as np import math import matplotlib.pyplot as plt import sys, os import pickle from mnist import load_mnist # 函数定义和画图 # 例子:定义step函数以及画图 def step_function(x): y=x>0 return np.array(y,int) def show_step(x): y=step_function(x) plt.plot(x,y,label='step function') plt.legend(loc="best") x = np.arange(-5.0, 5.0, 0.1) show_step(x) ''' 1. 根据阶跃函数step_function的例子,写出sigmoide和Relu函数的定义并画图。 ''' ''' 2. 定义softmax函数,根据输入x=[0.3,2.9,4.0],给出softmax函数的输出,并对输出结果求和。 ''' #获取mnist数据 def get_data(): (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, flatten=True, one_hot_label=False) return x_train,t_train,x_test, t_test #c初始化网络结构,network是字典,保存每一层网络参数W和b def init_network(): with open("sample_weight.pkl", 'rb') as f: network = pickle.load(f) return network #字典 ''' 3. 调用get_data和init_network函数, 输出x_train, t_train,x_test,t_test,以及network中每层参数的shape(一共三层) ''' ''' 4. 定义predict函数,进行手写数字的识别。 识别方法: 假设输入手写数字图像为x,维数为784(28*28的图像拉成一维向量), 第一层网络权值为W1(维数784, 50),b1(维数为50),第一层网络输出:z1=sigmoid(x*W1+b2)。 第二层网络权值为W2(维数50, 100),b2(维数为100),第二层网络输出:z2=sigmoid(z1*W2+b2)。 第三层网络权值为W3(维数100, 10),b3(维数为10),第三层网络输出(即识别结果):p=softmax(z2*W3+b3), p是向量,维数为10(类别数),表示图像x属于每一个类别的概率, 例如p=[0, 0, 0.95, 0.05, 0, 0, 0, 0, 0, 0],表示x属于第三类(数字2)的概率为0.95, 属于第四类(数字3)的概率为0.05,属于其他类别的概率为0. 由于x属于第三类的概率最大,因此,x属于第三类。 ''' ''' 5. 进行手写数字识别分类准确度的计算(总体分类精度),输出分类准确度。 例如测试数据数量为100,其中正确分类的数量为92,那么分类精度=92/100=0.92。 '''
1. Sigmoid函数的定义和画图:
```
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def show_sigmoid(x):
y = sigmoid(x)
plt.plot(x, y, label='sigmoid function')
plt.legend(loc="best")
x = np.arange(-5.0, 5.0, 0.1)
show_sigmoid(x)
```
ReLU函数的定义和画图:
```
def relu(x):
return np.maximum(0, x)
def show_relu(x):
y = relu(x)
plt.plot(x, y, label='ReLU function')
plt.legend(loc="best")
x = np.arange(-5.0, 5.0, 0.1)
show_relu(x)
```
2. Softmax函数的定义:
```
def softmax(x):
exp_x = np.exp(x)
sum_exp_x = np.sum(exp_x)
return exp_x / sum_exp_x
```
对于输入x=[0.3,2.9,4.0],softmax函数的输出为:
```
softmax(x)
array([0.01821127, 0.24519181, 0.73659691])
```
输出结果求和为1.
3. 调用get_data和init_network函数,输出x_train, t_train,x_test,t_test,以及network中每层参数的shape(一共三层):
```
x_train, t_train, x_test, t_test = get_data()
network = init_network()
for i, (w, b) in enumerate(network.items()):
print(f"Layer {i+1}: W shape:{w.shape}, b shape:{b.shape}")
print(f"x_train shape: {x_train.shape}")
print(f"t_train shape: {t_train.shape}")
print(f"x_test shape: {x_test.shape}")
print(f"t_test shape: {t_test.shape}")
```
4. 手写数字的识别代码如下:
```
def predict(network, x):
W1, b1 = network['W1'], network['b1']
W2, b2 = network['W2'], network['b2']
W3, b3 = network['W3'], network['b3']
z1 = sigmoid(np.dot(x, W1) + b1)
z2 = sigmoid(np.dot(z1, W2) + b2)
y = softmax(np.dot(z2, W3) + b3)
return y
# 获取测试数据
x_train, t_train, x_test, t_test = get_data()
network = init_network()
# 使用测试数据进行预测
accuracy_cnt = 0
for i in range(len(x_test)):
y = predict(network, x_test[i])
p = np.argmax(y)
if p == t_test[i]:
accuracy_cnt += 1
# 输出分类准确度
accuracy = float(accuracy_cnt) / len(x_test)
print("Accuracy:" + str(accuracy))
```
5. 进行手写数字识别分类准确度的计算(总体分类精度):
代码中已经实现,输出分类准确度即可。
阅读全文