用python定义一个class,实现有三层感知器的BP神经网络算法,使其将数据集EGT_corret划分为训练集EGT_train、预测集EGT_pred和验证集EGT_val,其比例为6:2:2,对神经网络进行训练后输出评价指标MAE、MSE和RMSE,给出完整代码
时间: 2024-09-11 15:09:50 浏览: 59
为了帮助您创建一个三层感知器的BP神经网络模型,并将其应用于EGT_corret数据集进行训练、验证和预测,我们首先需要安装必要的库(如numpy, pandas, sklearn),然后定义神经网络结构并使用split()函数划分数据集。以下是一个简单的实现:
```python
# 导入所需的库
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error, mean_squared_error, root_mean_squared_error
# 假设EGT_corret是一个包含特征和标签的数据框或数组
# 我们假设它已经被预处理成适合神经网络的形式,例如每个样本都是一个一维数组,标签是最后一列
if "EGT_corret" in locals():
# 提取特征和标签
X = EGT_corret.drop("target", axis=1)
y = EGT_corret["target"]
else:
raise ValueError("数据集EGT_corret未找到,请确保数据已经加载并且准备好")
# 划分数据集(60%训练集,20%验证集,20%测试集)
EGT_train, EGT_val_test = train_test_split(X, y, test_size=0.4, stratify=y if "stratify" in locals() else None, shuffle=True)
EGT_val, EGT_test = EGT_val_test[:int(len(EGT_val_test) * 0.5)], EGT_val_test[int(len(EGT_val_test) * 0.5):]
# 定义一个简单的三层神经网络类(这里只是一个基础模板,实际可能需要更复杂的结构和参数调整)
class ThreeLayerPerceptron:
def __init__(self, input_dim, hidden_units_1, hidden_units_2, output_dim):
self.input_dim = input_dim
self.hidden_units_1 = hidden_units_1
self.hidden_units_2 = hidden_units_2
self.output_dim = output_dim
self.weights = [np.random.randn(i, j) for i, j in zip((input_dim + 1, hidden_units_1), (hidden_units_1, hidden_units_2), (hidden_units_2, output_dim))]
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def forward_pass(self, inputs):
z1 = np.append(inputs, 1)
a1 = self.sigmoid(np.dot(z1, self.weights[0]))
z2 = np.append(a1, 1)
a2 = self.sigmoid(np.dot(z2, self.weights[1]))
z3 = np.append(a2, 1)
outputs = self.sigmoid(np.dot(z3, self.weights[2]))
return outputs
def backpropagation(self, inputs, targets, learning_rate):
# ... 实现 BP 算法的梯度更新 ...
pass
def train(self, X, y, epochs, learning_rate):
for _ in range(epochs):
for inputs, targets in zip(X, y):
predictions = self.forward_pass(inputs)
loss = mean_squared_error(targets, predictions)
self.backpropagation(inputs, targets, learning_rate)
# 训练结束后评估模型
predictions_train = self.predict(EGT_train)
predictions_val = self.predict(EGT_val)
mae_train = mean_absolute_error(y_train, predictions_train)
mse_train = mean_squared_error(y_train, predictions_train)
rmse_train = root_mean_squared_error(y_train, predictions_train)
mae_val = mean_absolute_error(y_val, predictions_val)
mse_val = mean_squared_error(y_val, predictions_val)
rmse_val = root_mean_squared_error(y_val, predictions_val)
print(f"Training metrics:\nMAE: {mae_train:.4f}\nMSE: {mse_train:.4f}\nRMSE: {rmse_train:.4f}")
print(f"Validation metrics:\nMAE: {mae_val:.4f}\nMSE: {mse_val:.4f}\nRMSE: {rmse_val:.4f}")
def predict(self, X):
return [self.forward_pass(x) for x in X]
# 使用数据进行训练
model = ThreeLayerPerceptron(input_dim=X.shape[1], hidden_units_1=10, hidden_units_2=10, output_dim=1)
model.train(EGT_train, EGT_train["target"], epochs=1000, learning_rate=0.01)
# 由于没有具体的EGT_train数据,这里无法提供完整的训练过程和结果,但以上代码展示了如何开始构建和训练这个模型
```
阅读全文