yolo数据集格式转换成coco
时间: 2023-10-28 17:05:39 浏览: 162
将YOLO数据集转换为COCO格式需要进行以下步骤:
1. 将YOLO标注文件(.txt)转换为COCO标注文件(.json)
2. 将YOLO图像文件(.jpg)复制到COCO数据集目录下的images文件夹中
3. 在COCO标注文件中添加图像信息
具体实现可以参考以下步骤:
1. 安装cocoapi
```
pip install pycocotools
```
2. 创建COCO数据集目录结构
```
coco_dataset/
annotations/
instances_train.json
instances_val.json
images/
train/
val/
```
3. 编写转换脚本
```python
import json
import os
from PIL import Image
# YOLO标注文件路径
yolo_annotation_path = 'yolo_dataset/annotations/train.txt'
# COCO数据集路径
coco_dataset_path = 'coco_dataset'
# COCO标注文件路径
coco_annotation_path = os.path.join(coco_dataset_path, 'annotations', 'instances_train.json')
# 图像目录路径
image_dir = os.path.join(coco_dataset_path, 'images', 'train')
# 类别名称映射表
class_name_map = {
'0': 'person',
'1': 'car',
# ...
}
# COCO标注文件格式
coco_annotation = {
"info": {},
"licenses": [],
"images": [],
"annotations": [],
"categories": []
}
# 添加类别信息
for class_id, class_name in class_name_map.items():
coco_annotation['categories'].append({
'id': int(class_id),
'name': class_name,
'supercategory': ''
})
# 读取YOLO标注文件
with open(yolo_annotation_path, 'r') as f:
lines = f.readlines()
# 处理每个标注文件
for line in lines:
line = line.strip()
image_path, *bboxes = line.split(' ')
# 添加图像信息
image_id = len(coco_annotation['images']) + 1
image_name = os.path.basename(image_path)
image = Image.open(image_path)
width, height = image.size
coco_annotation['images'].append({
'id': image_id,
'file_name': image_name,
'width': width,
'height': height
})
# 处理每个bbox
for bbox in bboxes:
class_id, x_center, y_center, w, h = bbox.split(',')
x_min = int(float(x_center) - float(w) / 2 * width)
y_min = int(float(y_center) - float(h) / 2 * height)
x_max = int(float(x_center) + float(w) / 2 * width)
y_max = int(float(y_center) + float(h) / 2 * height)
# 添加标注信息
annotation_id = len(coco_annotation['annotations']) + 1
coco_annotation['annotations'].append({
'id': annotation_id,
'image_id': image_id,
'category_id': int(class_id),
'bbox': [x_min, y_min, x_max - x_min, y_max - y_min],
'area': (x_max - x_min) * (y_max - y_min),
'iscrowd': 0
})
# 保存COCO标注文件
with open(coco_annotation_path, 'w') as f:
json.dump(coco_annotation, f)
```
4. 运行转换脚本
```
python yolo2coco.py
```
阅读全文