shield the Schottky contact是什么意思
时间: 2023-10-09 14:11:25 浏览: 213
"Shield the Schottky contact" 的意思是在器件中采取措施来保护或屏蔽肖特基接触。
肖特基接触是一种由金属与半导体之间形成的非欧姆接触,常用于各种电子器件中,如二极管、场效应晶体管等。然而,由于肖特基接触的工作原理和结构特点,它对外界电场和环境的敏感度较高,容易受到电场、温度、湿度等因素的影响,从而降低器件性能和可靠性。
为了保护肖特基接触,可以采取以下措施之一:
1. 物理屏蔽:通过在肖特基接触周围引入屏蔽层、金属层或其他材料,形成物理屏蔽结构,减少外界电场对肖特基接触的影响。
2. 电场屏蔽:通过在肖特基接触周围引入电场屏蔽结构,如沟槽终止或其他电场分散技术,使电场分布均匀,并减小电场梯度,从而降低对肖特基接触的影响。
3. 环境保护:通过在器件封装中引入防潮、防尘、防氧化等措施,保护肖特基接触免受湿度、氧化等环境因素的影响。
通过以上措施,可以有效地保护肖特基接触,提高器件的可靠性和性能。
相关问题
Solve the problem with c++ code, and give your code: Ack Country has N cities connected by M one-way channels. The cities occupied by the rebels are numbered 1, while the capital of Ack country is numbered N. In order to reduce the loss of effective force, you are permitted to use self-propelled bombers for this task. Any bomber enters the capital, your job is done. This seems simple enough, but the only difficulty is that many cities in Ack Country are covered by shields. If a city is protected by a shield, all shield generators that maintain the shield need to be destroyed before the bomber can enter or pass through the city. Fortunately, we know the cities where all the shield generators are located, and which cities' shields are being charged. If the bomber enters a city, all of its shield generators can be destroyed instantly. You can release any number of Bombermen and execute any command at the same time, but it takes time for bombermen to pass through the roads between cities. Please figure out how soon you can blow up Ack Nation's capital. The clock is ticking. Input: Two positive integers N,M in the first row. The next M lines, each with three positive integers, indicate that there is a road leading from the city to the city. It takes w time for the bomber to cross this road. Then N lines, each describing a city's shield. The first is a positive integer n, representing the number of shield generators that maintain shields in the city. Then n_i city numbers between 1 and N, indicating the location of each shield generator. In other words, if your bomber needs to enter the city, the bomber needs to enter all the entered cities in advance. If n_i=0, the city has no shields. Guarantee n_i=0.Output: a positive integer, the minimum time to blow up the capital. e.g., Input: 6 6 1 2 1 1 4 3 2 3 3 2 5 2 4 6 2 5 3 2 0 0 0 1 3 0 2 3 5, Output: 6.
以下是使用 Dijkstra 算法求解的 C++ 代码:
```c++
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
using namespace std;
const int MAXN = 1005;
const int INF = 1e9;
int n, m, dist[MAXN][20], vis[MAXN][20], shield[MAXN][20];
vector<pair<int,int>> e[MAXN];
void Dijkstra() {
memset(dist, 0x3f, sizeof(dist));
memset(vis, 0, sizeof(vis));
priority_queue<pair<int,pair<int,int>>, vector<pair<int,pair<int,int>>>, greater<pair<int,pair<int,int>>>> pq;
pq.push({0,{1,0}});
dist[1][0] = 0;
while (!pq.empty()) {
int u = pq.top().second.first;
int s = pq.top().second.second;
pq.pop();
if (vis[u][s]) continue;
vis[u][s] = 1;
for (auto v : e[u]) {
int w = v.second;
int t = v.first;
if (shield[u][s] && shield[u][s] == shield[v.first][s]) continue;
if (dist[t][s] > dist[u][s] + w) {
dist[t][s] = dist[u][s] + w;
pq.push({dist[t][s], {t, s}});
}
}
for (int i = 1; i <= n; i++) {
if (i != u && shield[i][s] && !vis[i][s]) {
if (dist[i][s] > dist[u][s] + shield[i][s]) {
dist[i][s] = dist[u][s] + shield[i][s];
pq.push({dist[i][s], {i, s}});
}
}
}
if (s < 19 && !vis[u][s+1]) {
if (dist[u][s+1] > dist[u][s] + 1) {
dist[u][s+1] = dist[u][s] + 1;
pq.push({dist[u][s+1], {u, s+1}});
}
}
}
int ans = INF;
for (int i = 0; i < 20; i++) {
ans = min(ans, dist[n][i]);
}
printf("%d\n", ans);
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; i++) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
e[u].push_back({v, w});
}
for (int i = 1; i <= n; i++) {
int k;
scanf("%d", &k);
while (k--) {
int x;
scanf("%d", &x);
shield[x][i/20] |= (1<<(i%20));
}
}
Dijkstra();
return 0;
}
```
算法思路:
考虑到每个城市上可能有多个盾牌,因此我们用一个 20 位的二进制数来表示每个城市上的盾牌状态。例如,第 $i$ 个城市上有第 $j$ 和第 $k$ 个盾牌,则 $shield[i][j/20]$ 和 $shield[i][k/20]$ 中的第 $j\%20$ 和第 $k\%20$ 位均为 1。
在 Dijkstra 算法中,我们需要维护一个状态 $s$,表示当前已经摧毁了哪些盾牌。例如,如果 $s=11011_2$,则表示已经摧毁了第 0、1、3、4、5 个盾牌。我们可以用一个长度为 20 的二进制数来表示这个状态。
在更新距离时,我们需要分别考虑以下三种情况:
1. 如果当前城市有盾牌,且这个盾牌没有被摧毁,则不能通过这个城市。因此,我们在更新时需要判断这个盾牌是否已经被摧毁。
2. 如果当前城市上有盾牌,且当前状态 $s$ 中没有摧毁这个盾牌,则需要先摧毁这个盾牌,再继续前进。因此,我们在更新时需要判断这个盾牌是否已经被摧毁,并且在距离上加上摧毁盾牌所需要的时间。
3. 如果当前状态 $s$ 中还有未摧毁的盾牌,则需要先摧毁这些盾牌,再继续前进。因此,我们可以将状态 $s$ 中的一个 1 移到下一位,表示摧毁了下一个盾牌,并在距离上加上 1。
最终的答案为所有状态中到达目的地的最小距离。
Give a solution to the problem of the shortest path with a shield c++ code, the shortest output time.Input: Two positive integers N,M in the first row. The next M lines, each with three positive integers, indicate that there is a road leading from the city to the city. It takes w time for the bomber to cross this road. Then N lines, each describing a city's shield. The first is a positive integer n, representing the number of shield generators that maintain shields in the city. Then n_i city numbers between 1 and N, indicating the location of each shield generator. In other words, if your bomber needs to enter the city, the bomber needs to enter all the entered cities in advance. If n_i=0, the city has no shields. Guarantee n_i=0.Output: a positive integer, the minimum time to blow up the capital.Must be able to pass the following examples:Input: 6 6 1 2 1 1 4 3 2 3 3 2 5 2 4 6 2 5 3 2 0 0 0 1 3 0 2 3 5, Output: 6.
以下是使用Dijkstra算法解决带有防护罩的最短路问题的C++代码:
```c++
#include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAXN = 25;
const int MAXM = 45;
struct Edge {
int to, next, w;
} edge[MAXM];
int main() {
int head[MAXN], cnt=0;
int dis[MAXN][MAXN], vis[MAXN];
int shield[MAXN][MAXN], d[MAXN][MAXN];
int n, m;
memset(dis, INF, sizeof(dis));
memset(head, -1, sizeof(head));
memset(shield, 0, sizeof(shield));
cin >> n >> m;
for (int i = 1; i <= m; i++) {
int u, v, w;
cin >> u >> v >> w;
edge[cnt].to = v;
edge[cnt].w = w;
edge[cnt].next = head[u];
head[u] = cnt++;
dis[u][v] = min(dis[u][v], w);
}
for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (i == j) continue;
dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
}
}
}
for (int i = 1; i <= n; i++) {
int k;
cin >> k;
for (int j = 1; j <= k; j++) {
int x;
cin >> x;
shield[x][i] = 1;
}
}
for (int s = 1; s <= n; s++) {
priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > pq;
memset(vis, 0, sizeof(vis));
for (int i = 1; i <= n; i++) {
d[s][i] = INF;
if (shield[s][i]) {
for (int j = 1; j <= n; j++) {
if (shield[s][j] && j != i) {
d[s][i] = min(d[s][i], dis[i][j]);
}
}
} else {
d[s][i] = dis[s][i];
}
}
pq.push({d[s][s], s});
while (!pq.empty()) {
int u = pq.top().second;
pq.pop();
if (vis[u]) continue;
vis[u] = 1;
for (int i = head[u]; i != -1; i = edge[i].next) {
int v = edge[i].to;
if (d[s][v] > d[s][u] + edge[i].w) {
d[s][v] = d[s][u] + edge[i].w;
pq.push({d[s][v], v});
}
}
}
}
int ans = INF;
for (int i = 1; i <= n; i++) {
if (shield[i][n]) continue;
ans = min(ans, d[i][n]);
}
cout << ans << endl;
return 0;
}
```
输入样例:
```
6 6
1 2 1
1 4 3
2 3 3
2 5 2
4 6 2
5 3 2
0
0
0
1 3
0
2 3 5
```
输出样例:
```
6
```
阅读全文