matlab对图片进行运动模糊退化后,再使用维纳滤波还原图像。
时间: 2024-12-23 21:26:48 浏览: 4
基于MATLAB维纳滤波算法在图像复原实验的应用.pdf
5星 · 资源好评率100%
在MATLAB中,可以首先通过仿射变换模拟运动模糊效果,然后使用维纳滤波(Wiener filter)恢复图像。以下是基本步骤:
1. **模拟运动模糊**:
```matlab
% 加载原始图像
img = imread('your_image.jpg');
% 设定模糊角度和模糊半径
blur_angle = 10; % 模拟10度的旋转模糊
blur_radius = 5; % 模拟5像素的平移模糊
% 创建模糊矩阵
rotation_matrix = [cosd(blur_angle), -sind(blur_angle); sind(blur_angle), cosd(blur_angle)];
shift_matrix = eye(2);
shift_matrix(1,2) = blur_radius;
shift_matrix(2,1) = blur_radius;
% 应用模糊
blurred_img = imwarp(img, kron(rotation_matrix, shift_matrix));
```
2. **维纳滤波还原**:
```matlab
% 设置维纳滤波的参数,如噪声方差sigma和理想清晰图像的先验知识SNR(信号噪声比)
sigma = estimateNoiseLevel(blurred_img); % 估计噪声水平
SNR = 40; % 假设的SNR值,单位dB
% 计算维纳滤波器系数
w = wiener2(blurred_img, sigma^2, SNR);
% 进行滤波并显示结果
restored_img = imfilter(blurred_img, w, 'replicate');
figure;
subplot(1,2,1), imshow(blurred_img), title('Blurred Image');
subplot(1,2,2), imshow(uint8(restored_img)), title('Restored Image using Wiener Filter');
```
`estimateNoiseLevel` 和 `wiener2` 函数帮助你计算合适的滤波参数。
注意,运动模糊的模拟可能并不完全准确,实际应用中可能需要更复杂的模型。此外,维纳滤波的性能取决于噪声特性以及先验信息的质量,选择合适的参数至关重要。
阅读全文