增强型功率谱密度的特征提取方法python代码
时间: 2023-09-27 22:07:05 浏览: 164
增强型功率谱密度(Enhanced Power Spectral Density,EPSD)是一种基于信号频谱的特征提取方法。以下是一个简单的Python代码示例,用于计算信号的增强型功率谱密度特征:
```python
import numpy as np
import scipy.signal as signal
def compute_epsd(signal, sample_rate):
# 计算短时傅里叶变换
f, t, Zxx = signal.stft(signal, sample_rate)
# 计算功率谱密度
psd = np.abs(Zxx)**2
# 计算增强型功率谱密度
epsd = 10 * np.log10(psd + 1e-10)
return epsd, f, t
```
这个函数接收两个参数:`signal` 是输入信号的时间域波形数据,`sample_rate` 是采样率。它使用Scipy库中的`signal.stft()`函数进行短时傅里叶变换,得到频谱图,并计算功率谱密度。然后,将功率谱密度转换为增强型功率谱密度,以便更好地表示信号的能量分布。
返回结果包括增强型功率谱密度 `epsd`,频率轴 `f` 和时间轴 `t`。你可以进一步使用这些结果进行特征提取或其他分析。请注意,在实际应用中,可能需要进行更多的参数调整和信号预处理,以适应具体的应用场景。
阅读全文