卡尔曼滤波行人目标跟踪国内外研究现状

时间: 2023-12-21 14:31:01 浏览: 72
根据提供的引用内容,卡尔曼滤波行人目标跟踪是多目标追踪的一种方法,用于检测和跟踪视频中的行人目标。卡尔曼滤波是一种递归滤波算法,通过对目标的位置和速度进行估计和预测,实现目标的跟踪。以下是卡尔曼滤波行人目标跟踪的国内外研究现状: 1. 国内研究现状:国内学者在卡尔曼滤波行人目标跟踪方面进行了大量的研究。例如,某些研究使用了改进的卡尔曼滤波算法,如扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF),以提高跟踪的准确性和鲁棒性。此外,一些研究还结合了深度学习技术,如卷积神经网络(CNN),用于提取行人目标的特征并改善跟踪性能。 2. 国外研究现状:国外学者也对卡尔曼滤波行人目标跟踪进行了广泛的研究。一些研究采用了基于外观模型的方法,如粒子滤波器和卡尔曼滤波器的组合,以提高跟踪的准确性和鲁棒性。此外,一些研究还使用了多传感器融合的方法,如融合摄像头和激光雷达数据,以提高目标的检测和跟踪性能。 综上所述,卡尔曼滤波行人目标跟踪在国内外都得到了广泛的研究和应用。通过不断改进算法和结合其他技术,可以提高行人目标跟踪的准确性和鲁棒性。
相关问题

卡尔曼滤波单目标跟踪python

卡尔曼滤波是一个常用的状态估计算法,被广泛地应用于目标跟踪、导航、控制等领域。单目标跟踪是指在视频中跟踪一个运动的目标物体,以确定其位置、速度等运动状态。可以利用卡尔曼滤波来实现单目标跟踪。 在Python中实现卡尔曼滤波单目标跟踪,可以先利用OpenCV提取目标物体的轮廓,并在图像中确定目标物体的中心位置。然后定义卡尔曼滤波模型,利用测量模型计算目标物体的运动状态,并根据卡尔曼滤波算法调整估计值。 具体实现步骤如下: 1、利用OpenCV读取视频并提取目标物体的轮廓,确定目标物体的中心位置。 2、设置卡尔曼滤波模型,包括状态变量、控制变量、状态转移矩阵、状态方程、测量矩阵、测量方程、误差协方差矩阵等参数。 3、对每一帧图像进行跟踪。首先根据当前测量值进行预测,然后根据测量值计算估计值,并根据估计值计算误差协方差矩阵。 4、根据卡尔曼滤波算法计算卡尔曼增益,根据卡尔曼增益对估计值进行调整,并更新误差协方差矩阵。 5、输出跟踪结果并在当前帧图像中绘制目标物体的运动轨迹。 卡尔曼滤波单目标跟踪是一个常见的应用场景,对于实现目标跟踪具有重要意义。Python中卡尔曼滤波目标跟踪的实现也具有很高的实用性和意义。

卡尔曼滤波多目标跟踪算法matlab

卡尔曼滤波多目标跟踪算法是一种常用的目标跟踪方法,它基于状态估计和观测更新的原理,通过对目标的预测和测量进行融合,实现对目标位置和速度等状态的估计。在Matlab中,可以使用以下步骤实现卡尔曼滤波多目标跟踪算法: 1. 初始化卡尔曼滤波器参数:包括状态转移矩阵、观测矩阵、过程噪声协方差矩阵、测量噪声协方差矩阵等。 2. 对每个目标进行初始化:包括初始状态向量、初始状态协方差矩阵等。 3. 对每个时间步进行以下步骤: a. 预测:根据上一时刻的状态估计和状态转移矩阵,预测当前时刻的状态。 b. 更新:根据当前时刻的观测值和观测矩阵,更新状态估计和状态协方差矩阵。 c. 目标关联:根据预测和更新的结果,进行目标关联,将观测值与预测值进行匹配。 d. 目标管理:根据目标关联结果,更新目标的状态和协方差矩阵,同时处理新出现的目标和消失的目标。 4. 得到最终的目标跟踪结果。 在Matlab中,可以使用Kalman滤波器对象来实现卡尔曼滤波多目标跟踪算法。具体的实现步骤和代码可以参考Matlab官方文档或者相关的教程和示例代码。

相关推荐

最新推荐

recommend-type

卡尔曼滤波算法及C语言代码.

卡尔曼滤波简介及其算法实现代码  卡尔曼滤波算法实现代码(C,C++分别实现)
recommend-type

扩展卡尔曼滤波——非线性EKF-C++

本篇为组合导航扩展卡尔曼滤波 C++ 代码实现。 注:本例所用传感器有激光雷达传感器,雷达传感器 /*扩展卡尔曼滤波器*/ #include #include #include #include #include #include #include #include #define ROWS ...
recommend-type

扩展卡尔曼滤波抛物线实例.doc

介绍了西工大严龚敏老师的EKF仿真实例。主要是涉及到一个例子,小球平抛,通过建立状态方程和量测方程,求解相应的雅各比矩阵,从而推导出扩展卡尔曼滤波的过程,希望能对学习EKF的同学有所帮助
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

ActionContext.getContext().get()代码含义

ActionContext.getContext().get() 是从当前请求的上下文对象中获取指定的属性值的代码。在ActionContext.getContext()方法的返回值上,调用get()方法可以获取当前请求中指定属性的值。 具体来说,ActionContext是Struts2框架中的一个类,它封装了当前请求的上下文信息。在这个上下文对象中,可以存储一些请求相关的属性值,比如请求参数、会话信息、请求头、应用程序上下文等等。调用ActionContext.getContext()方法可以获取当前请求的上下文对象,而调用get()方法可以获取指定属性的值。 例如,可以使用 Acti
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种