Error in pc1.dat_LDM %>% group_by(ABtrans) %>% summarise(n = n()) %>% : could not find function "%>%" Traceback:

时间: 2024-05-04 10:13:28 浏览: 9
这个错误是因为在你的代码中使用了`%>%`这个函数,但是R语言中没有找到这个函数。`%>%`是管道操作符,通常用于将数据流从一个函数传递到另一个函数。它是由`magrittr`包提供的。 要解决这个错误,你需要先安装`magrittr`包,然后加载它。你可以使用以下代码来安装和加载`magrittr`包: ```R install.packages("magrittr") # 安装magrittr包 library(magrittr) # 加载magrittr包 ``` 安装和加载完`magrittr`包后,你就可以使用`%>%`管道操作符了。
相关问题

pc1.trans <- data %>% group_by(ABtrans) %>% summarise(n=n()) %>% as.data.frame()

这是一段R语言代码,它的作用是将数据按照ABtrans列进行分组,并计算每组中数据的数量,最后将结果转换为数据框格式并赋值给pc1.trans变量。其中“data”是数据集的名称,“ABtrans”是数据集中的一列,表示基因转录本的状态。这段代码的目的是为了对基因转录本的状态进行分组统计,以便后续的数据分析和可视化。

PCA_Plot_3=function (data,Annotation,VAR,Color) { # logcountdata row:genes,column: samples pca <- prcomp(data) pca_out<-as.data.frame(pca$x) df_out<- pca_out %>%tibble::rownames_to_column(var=VAR) %>% left_join(., Annotation) #df_out<- merge (pca_out,Annotation,by.x=0,by.y=0) # label_color<- factor(df_out[,group]) ggplot(df_out,aes_string(x="PC1",y="PC2")) +geom_point(aes_string(colour = Color)) } Deseq2_Deseq_function_2=function (Countdata,Coldata) { dds_fil <- DESeq2:: DESeqDataSetFromMatrix(countData =Countdata, colData = Coldata, design = ~Group) dds_fil_Deg<- DESeq2::DESeq(dds_fil) return(dds_fil_Deg) } pheatmap_singscore=function (pathways,data,Annotation) { Gene_select_anno= data[,colnames(data) %in% pathways] %>%t()%>%.[,rownames(Annotation)] # return(Gene_select_anno) # Anno_expression_data=Gene_select_anno[,c("SYMBOL",Group_select)] %>% as.data.frame() %>% distinct() %>% na.omit() # rownames(Anno_expression_data)=Anno_expression_data[,"SYMBOL"] # Annotation=group_anno["Gene_type"] # input= Anno_expression_data[,Group_select] # F2_pheatmap <- pheatmap::pheatmap(input, cellwigermline calling GATKdth = 10, cellheight = 12, scale = "row", # treeheight_row = 5, # show_rownames = T,show_colnames = T, # annotation_col= Annotation, # # annotation_row=Annotation, # annotation_legend=Label_def, # cluster_rows = T, cluster_cols = F,clustering_distance_rows = "euclidean") pheatmap::pheatmap(Gene_select_anno, cellwigermline=5, cellheight = 10,cellwidth = 10, scale = "row", treeheight_row = 5, show_rownames = T,show_colnames = F, annotation_col= Annotation, # annotation_row=Annotation, #annotation_legend=Label_def, cluster_rows = T, cluster_cols = F,clustering_distance_rows = "euclidean") } matrix.please<-function(x) { m<-as.matrix(x[,-1]) rownames(m)<-x[,1] m } 这是r语言的代码,告诉我每一条代码的作用和意义

PCA_Plot_3: 这个函数用来绘制主成分分析(PCA)的散点图。它接受四个参数:data(数据矩阵),Annotation(注释信息),VAR(行名),Color(颜色)。首先,它对数据进行主成分分析(prcomp函数),然后将主成分分析的结果转换为数据帧(pca_out)。接下来,它将行名转换为指定的VAR变量名,并将注释信息与主成分分析结果进行连接(left_join函数)。最后,它使用ggplot库绘制散点图,其中x轴表示PC1,y轴表示PC2,点的颜色由Color参数指定。 Deseq2_Deseq_function_2: 这个函数用于进行差异表达分析。它接受两个参数:Countdata(基因计数数据)和Coldata(样本注释信息)。首先,它使用DESeq2包中的DESeqDataSetFromMatrix函数将Countdata和Coldata转换为差异表达分析所需的数据集对象。然后,它使用DESeq2包中的DESeq函数进行差异表达分析,并返回结果。 pheatmap_singscore: 这个函数用于绘制热图。它接受三个参数:pathways(基因通路信息),data(基因表达数据),Annotation(注释信息)。首先,它从data中选择pathways对应的基因,并根据Annotation的行名对选定的基因进行筛选。然后,它使用pheatmap包中的pheatmap函数绘制热图,其中Gene_select_anno是待绘制的基因数据,Annotation用于注释列,cluster_rows参数表示是否对行进行聚类,clustering_distance_rows参数表示行聚类所使用的距离度量。 matrix.please: 这个函数用于将数据框转换为矩阵。它接受一个参数x(数据框),并将x的第一列作为行名,将x的其余列转换为矩阵。最后,它返回该矩阵。

相关推荐

import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from mpl_toolkits.mplot3d import Axes3D from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler data=pd.read_csv('H:/analysis_results/mean_HN.csv') data.head() x=data.iloc[:,1:7] y=data.iloc[:,6] scaler=StandardScaler() scaler.fit(x) x_scaler=scaler.transform(x) print(x_scaler.shape) pca=PCA(n_components=3) x_pca=pca.fit_transform(x_scaler) print(x_pca.shape) #查看各个主成分对应的方差大小和占全部方差的比例 #可以看到前2个主成分已经解释了样本分布的90%的差异了 print('explained_variance_:',pca.explained_variance_) print('explained_variance_ratio_:',pca.explained_variance_ratio_) print('total explained variance ratio of first 6 principal components:',sum(pca.explained_variance_ratio_)) #将分析的结果保存成字典 result={ 'explained_variance_:',pca.explained_variance_, 'explained_variance_ratio_:',pca.explained_variance_ratio_, 'total explained variance ratio:',np.sum(pca.explained_variance_ratio_)} df=pd.DataFrame.from_dict(result,orient='index',columns=['value']) df.to_csv('H:/analysis_results/Cluster analysis/pca_explained_variance_HN.csv') #可视化各个主成分贡献的方差 #fig1=plt.figure(figsize=(10,10)) #plt.rcParams['figure.dpi'] = 300#设置像素参数值 plt.rcParams['path.simplify'] = False#禁用抗锯齿效果 plt.figure() plt.plot(np.arange(1,4),pca.explained_variance_,color='blue', linestyle='-',linewidth=2) plt.xticks(np.arange(1, 4, 1))#修改X轴间隔为1 plt.title('PCA_plot_HN') plt.xlabel('components_n',fontsize=16) plt.ylabel('explained_variance_',fontsize=16) #plt.savefig('H:/analysis_results/Cluster analysis/pca_explained_variance_HN.png') plt.show(),想要将得出的结果value为3个标签PC1,PC2,PC3,如何修改

import pandas as pd import numpy as np from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt # 读取数据 data = pd.read_csv('D:/pythonProject/venv/BostonHousing2.csv') # 提取前13个指标的数据 X = data.iloc[:, 5:18].values # 数据标准化 scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # 主成分分析 pca = PCA() X_pca = pca.fit_transform(X_scaled) # 特征值和特征向量 eigenvalues = pca.explained_variance_ eigenvectors = pca.components_.T # 碎石图 variance_explained = np.cumsum(eigenvalues / np.sum(eigenvalues)) plt.plot(range(6, 19), variance_explained, marker='o') plt.xlabel('Number of Components') plt.ylabel('Cumulative Proportion of Variance Explained') plt.title('Scree Plot') plt.show() # 选择主成分个数 n_components = np.sum(variance_explained <= 0.95) + 1 # 前2个主成分的载荷图 loadings = pd.DataFrame(eigenvectors[:, 0:2], columns=['PC1', 'PC2'], index=data.columns[0:13]) plt.figure(figsize=(10, 6)) plt.scatter(loadings['PC1'], loadings['PC2'], alpha=0.7) for i, feature in enumerate(loadings.index): plt.text(loadings['PC1'][i], loadings['PC2'][i], feature) plt.xlabel('PC1') plt.ylabel('PC2') plt.title('Loading Plot') plt.grid() plt.show() # 主成分得分图 scores = pd.DataFrame(X_pca[:, 0:n_components], columns=['PC{}'.format(i+1) for i in range(n_components)]) plt.figure(figsize=(10, 6)) plt.scatter(scores['PC1'], scores['PC2'], alpha=0.7) for i, label in enumerate(data['MEDV']): plt.text(scores['PC1'][i], scores['PC2'][i], label) plt.xlabel('PC1') plt.ylabel('PC2') plt.title('Scores Plot') plt.grid() plt.show() # 综合评估和排序 data['PC1_score'] = X_pca[:, 0] sorted_data = data.sort_values(by='PC1_score') # 主成分回归模型 from sklearn.linear_model import LinearRegression Y = data['MEDV'].values.reshape(-1, 1) X_pca_regression = X_pca[:, 0].reshape(-1, 1) regression_model = LinearRegression() regression_model.fit(X_pca_regression, Y) # 回归方程 intercept = regression_model.intercept_[0] slope = regression_model.coef_[0][0] equation = "MEDV = {:.2f} + {:.2f} * PC1".format(intercept, slope) print("Regression Equation:", equation) # 最小二乘估计结果 from statsmodels.api import OLS X_const = np.concatenate((np.ones((506, 1)), X_pca_regression), axis=1) ols_model = OLS(Y, X_const).fit() print("OLS Regression Summary:") print(ols_model.summary())

最新推荐

recommend-type

Java_Spring Boot 3主分支2其他分支和Spring Cloud微服务的分布式配置演示Spring Cl.zip

Java_Spring Boot 3主分支2其他分支和Spring Cloud微服务的分布式配置演示Spring Cl
recommend-type

ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计

ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)
recommend-type

基于MATLAB实现的V两幅图像中有重叠部分,通过数字图像相关算法可以找到两幅图像相同的点+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的V两幅图像中有重叠部分,通过数字图像相关算法可以找到两幅图像相同的点+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不