请帮我为上面问题写python代码
时间: 2024-10-08 15:15:06 浏览: 25
「Python入门」Python代码规范(风格)
当然,我可以为你提供一些Python代码示例,但这涉及到多个任务,所以我将分别给出每个任务的基本框架。请注意,实际代码会更复杂,可能包含数据加载、清洗、特征工程、模型训练和评估等多个部分。这里我们使用常见的库如pandas、numpy、scikit-learn等。
### 1. 多分类(用SVM举例)
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import classification_report
# 加载数据
data = pd.read_csv('beach_data.csv')
# 数据预处理
X = data.drop(['beach_id', 'date'], axis=1)
y = data['beach_id']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 使用SVM模型
clf = SVC()
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)
# 评估
print(classification_report(y_test, predictions))
```
### 2. 序列预测(用LSTM举例,假设数据已经切分为sequences)
```python
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
model = Sequential([
LSTM(64, input_shape=(timesteps, features)),
Dense(units=128, activation='relu'),
Dense(units=num_classes, activation='softmax')
])
model.compile(loss='categorical_crossentropy', optimizer='adam')
model.fit(sequences, labels, epochs=50, validation_split=0.2)
```
替换`timesteps`和`features`为你的序列长度和特征数量。
### 3. 聚类(用KMeans举例)
```python
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
# 假设已经预处理过的数据存入X
kmeans = KMeans(n_clusters=clusters)
kmeans.fit(X)
labels = kmeans.labels_
plt.scatter(X[:, 0], X[:, 1], c=labels)
plt.show()
```
用`cluster`变量指定想要的聚类数量。
### 4. 数据预处理
```python
import pandas as pd
import numpy as np
from sklearn.impute import SimpleImputer
data = pd.read_csv('beach_data.csv')
imputer = SimpleImputer(strategy='mean') # 或者其他策略,如'most_frequent'
data.fillna(imputer.fit_transform(data), inplace=True)
data[['water_temp', 'wave_height', ...]] = (data[['water_temp', 'wave_height', ...]] - data[['water_temp', 'wave_height', ...]].min()) / (data[['water_temp', 'wave_height', ...']].max() - data[['water_temp', 'wave_height', ...]].min())
```
注意,这里只是基本的代码模板,实际编写时还需要根据数据的具体情况进行调整。
阅读全文