pytorch语义分割最终分类代码
时间: 2023-10-23 21:09:32 浏览: 108
以下是一个简单的 PyTorch 语义分割的分类代码,仅供参考:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms, datasets
# 定义数据预处理
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
# 加载数据集
train_dataset = datasets.Cityscapes('./data', split='train', mode='fine', target_type='semantic', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)
# 定义模型
class SegNet(nn.Module):
def __init__(self):
super(SegNet, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(128,64, kernel_size=2, stride=2),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(64, 34, kernel_size=2, stride=2)
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
model = SegNet()
model.train()
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('[%d] loss: %.3f' % (epoch + 1, running_loss / len(train_loader)))
# 测试模型
test_dataset = datasets.Cityscapes('./data', split='val', mode='fine', target_type='semantic', transform=transform)
test_loader = DataLoader(test_dataset, batch_size=4, shuffle=True)
model.eval()
with torch.no_grad():
correct = 0
total = 0
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0) * labels.size(1) * labels.size(2)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))
```
阅读全文