mp_drawing = mp.solutions.drawing_utils DrawingSpec_point = mp_drawing.DrawingSpec((0, 255, 0), 1, 1) DrawingSpec_line = mp_drawing.DrawingSpec((0, 0, 255), 1, 1)
时间: 2023-10-04 14:07:17 浏览: 70
这段代码是使用Mediapipe库绘制图形的相关设置。`mp_drawing`是Mediapipe库的绘图工具,`DrawingSpec_point`和`DrawingSpec_line`是绘制点和线的规格参数。
`DrawingSpec_point`用于定义绘制点的规格,它包含三个参数:颜色值`(0, 255, 0)`表示点的颜色为绿色,线宽为1,点的半径也为1。
`DrawingSpec_line`用于定义绘制线的规格,它包含三个参数:颜色值`(0, 0, 255)`表示线的颜色为蓝色,线宽为1,线的类型也为1。
这些设置可以根据实际需求进行调整,用于在图像上绘制不同样式的点和线。
相关问题
mp_drawing = mp.solutions.drawing_utils mp_drawing_styles = mp.solutions.drawing_styles mp_hands = mp.solutions.hands
mp.solutions.drawing_utils是MediaPipe库中提供的一个模块,主要用于在图像或视频中绘制出人体姿态和手部姿态的关键点。例如,我们可以使用该模块来可视化手部姿态识别结果。
mp.solutions.drawing_styles是MediaPipe库中提供的一个模块,主要用于定义用于绘制姿态估计结果的颜色和线宽等样式。
mp.solutions.hands是MediaPipe库中提供的一个模块,主要用于进行手部姿态识别任务。它提供了一种快速、准确的方法来检测和跟踪双手的21个关键点,包括手指、手掌、手腕等,并可以输出相关信息,如手势识别和手势方向等。
import cv2 import mediapipe as mp mp_drawing = mp.solutions.drawing_utils mp_drawing_styles = mp.solutions.drawing_styles mp_holistic = mp.solutions.holistic # For webcam input: filepath='F:\\video000\\ce.mp4' cap = cv2.VideoCapture(filepath) with mp_holistic.Holistic( min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic: while cap.isOpened(): success, image = cap.read() if not success: print("Ignoring empty camera frame.") # If loading a video, use 'break' instead of 'continue'. break # To improve performance, optionally mark the image as not writeable to # pass by reference. image.flags.writeable = False image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) results = holistic.process(image) # Draw landmark annotation on the image. image.flags.writeable = True image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) mp_drawing.draw_landmarks( image, results.face_landmarks, mp_holistic.FACEMESH_CONTOURS, landmark_drawing_spec=None, connection_drawing_spec=mp_drawing_styles .get_default_face_mesh_contours_style()) mp_drawing.draw_landmarks( image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS, landmark_drawing_spec=mp_drawing_styles .get_default_pose_landmarks_style()) # Flip the image horizontally for a selfie-view display. cv2.imshow('MediaPipe Holistic', cv2.flip(image, 1)) if cv2.waitKey(5) & 0xFF == 27: break cap.release() 在这段代码中引入注意力机制,使人体步态特征更好的提取
在这段代码中,要引入注意力机制以提取人体步态特征,可以考虑在Holistic模型的输出结果中使用注意力机制进行加权融合,以强化对关键信息的关注和捕捉。具体操作如下:
1. 在Holistic模型的process()函数中,设置use_attention=True,以启用注意力机制。
2. 在Holistic模型的输出结果中,选择关键的特征点或特征向量,并使用注意力机制进行加权融合,以得到最终的人体步态特征表示。
3. 对特征表示进行进一步的处理和分类,以实现步态识别等应用。
下面是一个示例代码,用于在Holistic模型中引入注意力机制:
```
import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_holistic = mp.solutions.holistic
# For webcam input:
filepath = 'F:\\video000\\ce.mp4'
cap = cv2.VideoCapture(filepath)
with mp_holistic.Holistic(
min_detection_confidence=0.5,
min_tracking_confidence=0.5,
use_attention=True) as holistic:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
break
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = holistic.process(image)
# Extract the key feature points or vectors from the output results.
pose_landmarks = results.pose_landmarks.landmark
face_landmarks = results.face_landmarks.landmark
left_hand_landmarks = results.left_hand_landmarks.landmark
right_hand_landmarks = results.right_hand_landmarks.landmark
# Apply attention mechanism to the key feature points or vectors.
pose_attention = apply_attention(pose_landmarks)
face_attention = apply_attention(face_landmarks)
left_hand_attention = apply_attention(left_hand_landmarks)
right_hand_attention = apply_attention(right_hand_landmarks)
# Combine the attention-weighted feature vectors to form the final gait feature.
gait_feature = np.concatenate([pose_attention, face_attention, left_hand_attention, right_hand_attention])
# Further process and classify the gait feature to achieve gait recognition.
...
# Draw landmark annotation on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
mp_drawing.draw_landmarks(
image,
results.face_landmarks,
mp_holistic.FACEMESH_CONTOURS,
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles
.get_default_face_mesh_contours_style())
mp_drawing.draw_landmarks(
image,
results.pose_landmarks,
mp_holistic.POSE_CONNECTIONS,
landmark_drawing_spec=mp_drawing_styles
.get_default_pose_landmarks_style())
# Flip the image horizontally for a selfie-view display.
cv2.imshow('MediaPipe Holistic', cv2.flip(image, 1))
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
```
其中,apply_attention()函数用于对输入的特征点或特征向量应用注意力机制,可以根据具体需求选择不同的注意力模型和参数。注意力机制的加权融合可以使用numpy库中的矩阵乘法或加法等运算实现。
阅读全文