total_losses.update(total_loss.item()) ValueError: only one element tensors can be converted to Python scalars
时间: 2023-11-06 12:04:49 浏览: 149
这个错误通常是因为`total_loss`是一个张量(tensor),而`update`方法只接受标量(scalar)。
你可以尝试使用`item()`方法将张量转换为标量,例如:
```
total_losses.update(total_loss.item())
```
这样就可以将`total_loss`的值转换为标量,然后传递给`update`方法了。
相关问题
generator = build_lstm_generator(seq_len, hidden_size, n_embeddings,compiler=False) discriminator = build_lstm_discriminator(seq_len + 1, hidden_size, n_embeddings) optimizer = Adam(learning_rate=0.0001) save_freq = 1000 gen_losses = Mean() dis_losses = Mean() for i,(x_inputs,x_outputs) in enumerate(dataset): gen_loss,dis_loss = train_on_step(x_inputs,x_outputs) gen_losses.update_state(gen_loss) dis_losses.update_state(dis_loss) if (i+1) % save_freq == 0: generator.save_weights(f"saved_models/iter-{(i+1)//save_freq}.h5") if i % 20 == 0: print(f'iter: {i}, generatorLoss: {gen_losses.result()}, discriminatorLoss: {dis_losses.result()}') gen_losses.reset_state() dis_losses.reset_state()
这段代码中,首先使用`build_lstm_generator()`函数和`build_lstm_discriminator()`函数分别创建了一个生成器和一个判别器,并使用`Adam()`函数定义了一个Adam优化器,学习率为0.0001。`seq_len`、`hidden_size`、`n_embeddings`等参数用于指定模型的超参数。
接着,代码使用`enumerate()`函数遍历了`dataset`中的每个batch,并调用`train_on_step()`函数对生成器和判别器进行一次训练。在训练过程中,代码使用`Mean()`函数分别计算了生成器损失和判别器损失的平均值,并使用`update_state()`函数更新了平均损失值。同时,代码还定义了一个变量`save_freq`,表示每训练多少个batch就保存一次模型。
在每次保存模型后,代码使用`print()`函数输出当前的迭代次数、生成器损失和判别器损失。这里使用了字符串插值的语法,即在输出字符串中使用`{}`占位符来引用变量的值。同时,代码还使用了`reset_state()`函数清空了平均损失值,以便下一个batch的计算。
总体来说,这段代码实现了对生成器和判别器的训练,并定期保存模型。在训练过程中,代码还输出了生成器损失和判别器损失的平均值。
def train_step(real_ecg, dim): noise = tf.random.normal(dim) for i in range(disc_steps): with tf.GradientTape() as disc_tape: generated_ecg = generator(noise, training=True) real_output = discriminator(real_ecg, training=True) fake_output = discriminator(generated_ecg, training=True) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) ### for tensorboard ### disc_losses.update_state(disc_loss) fake_disc_accuracy.update_state(tf.zeros_like(fake_output), fake_output) real_disc_accuracy.update_state(tf.ones_like(real_output), real_output) ####################### with tf.GradientTape() as gen_tape: generated_ecg = generator(noise, training=True) fake_output = discriminator(generated_ecg, training=True) gen_loss = generator_loss(fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) ### for tensorboard ### gen_losses.update_state(gen_loss) ####################### def train(dataset, epochs, dim): for epoch in tqdm(range(epochs)): for batch in dataset: train_step(batch, dim) disc_losses_list.append(disc_losses.result().numpy()) gen_losses_list.append(gen_losses.result().numpy()) fake_disc_accuracy_list.append(fake_disc_accuracy.result().numpy()) real_disc_accuracy_list.append(real_disc_accuracy.result().numpy()) ### for tensorboard ### # with disc_summary_writer.as_default(): # tf.summary.scalar('loss', disc_losses.result(), step=epoch) # tf.summary.scalar('fake_accuracy', fake_disc_accuracy.result(), step=epoch) # tf.summary.scalar('real_accuracy', real_disc_accuracy.result(), step=epoch) # with gen_summary_writer.as_default(): # tf.summary.scalar('loss', gen_losses.result(), step=epoch) disc_losses.reset_states() gen_losses.reset_states() fake_disc_accuracy.reset_states() real_disc_accuracy.reset_states() ####################### # Save the model every 5 epochs # if (epoch + 1) % 5 == 0: # generate_and_save_ecg(generator, epochs, seed, False) # checkpoint.save(file_prefix = checkpoint_prefix) # Generate after the final epoch display.clear_output(wait=True) generate_and_save_ecg(generator, epochs, seed, False)
下面是将上述代码转换为PyTorch代码的示例:
```python
def train_step(real_ecg, dim):
noise = torch.randn(dim)
for i in range(disc_steps):
generated_ecg = generator(noise, training=True)
real_output = discriminator(real_ecg, training=True)
fake_output = discriminator(generated_ecg, training=True)
disc_loss = discriminator_loss(real_output, fake_output)
discriminator.zero_grad()
disc_loss.backward()
discriminator_optimizer.step()
### for tensorboard ###
disc_losses.update(disc_loss)
fake_disc_accuracy.update(torch.zeros_like(fake_output), fake_output)
real_disc_accuracy.update(torch.ones_like(real_output), real_output)
#######################
for i in range(gen_steps):
generated_ecg = generator(noise, training=True)
fake_output = discriminator(generated_ecg, training=True)
gen_loss = generator_loss(fake_output)
generator.zero_grad()
gen_loss.backward()
generator_optimizer.step()
### for tensorboard ###
gen_losses.update(gen_loss)
#######################
def train(dataset, epochs, dim):
for epoch in tqdm(range(epochs)):
for batch in dataset:
train_step(batch, dim)
disc_losses_list.append(disc_losses.avg)
gen_losses_list.append(gen_losses.avg)
fake_disc_accuracy_list.append(fake_disc_accuracy.avg)
real_disc_accuracy_list.append(real_disc_accuracy.avg)
### for tensorboard ###
# with disc_summary_writer.as_default():
# tf.summary.scalar('loss', disc_losses.result(), step=epoch)
# tf.summary.scalar('fake_accuracy', fake_disc_accuracy.result(), step=epoch)
# tf.summary.scalar('real_accuracy', real_disc_accuracy.result(), step=epoch)
# with gen_summary_writer.as_default():
# tf.summary.scalar('loss', gen_losses.result(), step=epoch)
#######################
disc_losses.reset()
gen_losses.reset()
fake_disc_accuracy.reset()
real_disc_accuracy.reset()
#######################
# Save the model every 5 epochs
# if (epoch + 1) % 5 == 0:
# generate_and_save_ecg(generator, epochs, seed, False)
# checkpoint.save(file_prefix = checkpoint_prefix)
# Generate after the final epoch
# display.clear_output(wait=True)
# generate_and_save_ecg(generator, epochs, seed, False)
```
注意:上述代码仅作为示例,可能需要根据实际情况进行调整和修改。
阅读全文