基于dbscan的gps轨迹聚类详细代码及可视化
时间: 2023-09-12 16:07:55 浏览: 160
基于DBSCAN算法的数据聚类
3星 · 编辑精心推荐
以下是基于DBSCAN的GPS轨迹聚类的详细代码及可视化部分:
```python
import numpy as np
from sklearn.cluster import DBSCAN
from geopy.distance import great_circle
from shapely.geometry import MultiPoint
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
# 读取GPS数据
locations = np.genfromtxt('gps_data.csv', delimiter=',')
# 计算距离矩阵
def get_distance_matrix(locations):
distance_matrix = np.zeros((len(locations), len(locations)))
for i, loc1 in enumerate(locations):
for j, loc2 in enumerate(locations):
if i != j:
distance_matrix[i][j] = great_circle(loc1, loc2).kilometers
return distance_matrix
# 进行轨迹聚类
def cluster_with_dbscan(locations, eps, min_samples):
distance_matrix = get_distance_matrix(locations)
db = DBSCAN(eps=eps, min_samples=min_samples, metric='precomputed').fit(distance_matrix)
labels = db.labels_
clusters = []
for label in np.unique(labels):
if label == -1:
continue
cluster = locations[labels == label]
clusters.append(cluster)
return clusters
# 可视化轨迹聚类结果
def plot_clusters(clusters):
fig = plt.figure(figsize=(8, 8))
m = Basemap(projection='merc', llcrnrlon=-180, llcrnrlat=-60, urcrnrlon=180, urcrnrlat=80)
m.drawcoastlines()
m.drawcountries()
m.fillcontinents(color='lightgray', lake_color='aqua')
m.drawmapboundary(fill_color='aqua')
colors = plt.cm.Spectral(np.linspace(0, 1, len(clusters)))
for i, cluster in enumerate(clusters):
lons, lats = zip(*cluster)
x, y = m(list(lons), list(lats))
m.plot(x, y, 'o', color=colors[i], markersize=4)
plt.show()
# 主函数
if __name__ == '__main__':
eps = 1.5 # 单位为千米
min_samples = 3
clusters = cluster_with_dbscan(locations, eps, min_samples)
plot_clusters(clusters)
```
这段代码首先读取GPS数据,然后根据GPS数据计算距离矩阵。接着,使用DBSCAN算法进行轨迹聚类,并可视化聚类结果。在可视化部分,使用Basemap库绘制地图,并根据聚类结果使用不同的颜色绘制不同的聚类簇。
阅读全文