python随机森林roc曲线
时间: 2023-12-30 21:24:37 浏览: 148
以下是使用Python绘制随机森林ROC曲线的示例代码:
```python
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
# 计算ROC曲线的假正率和真正率
fpr, tpr, thresholds = roc_curve(y_test, y_score[:, 1])
# 计算AUC值
roc_auc = auc(fpr, tpr)
# 绘制ROC曲线
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show()
```
这段代码使用`sklearn.metrics`库中的`roc_curve`和`auc`函数来计算ROC曲线的假正率(False Positive Rate)和真正率(True Positive Rate),然后使用`matplotlib.pyplot`库来绘制ROC曲线。在绘制曲线之前,需要将测试集的真实标签(`y_test`)和随机森林模型的预测概率(`y_score`)作为参数传入`roc_curve`函数。最后,使用`plt.plot`函数绘制ROC曲线,并设置相关的标签和标题。
阅读全文