python 随机森林 训练集和测试集评价指标
时间: 2023-10-17 08:06:31 浏览: 142
基于随机森林RF未来预测,RF时序多步预测,单列数据递归预测 评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高
对于随机森林模型的训练集和测试集评价指标,常用的指标包括:
1. 准确率(Accuracy):分类正确的样本数占总样本数的比例。可以通过混淆矩阵计算。
2. 精确率(Precision):预测为正类别的样本中实际为正类别的比例。可以通过混淆矩阵计算。
3. 召回率(Recall):实际为正类别的样本中被预测为正类别的比例。可以通过混淆矩阵计算。
4. F1-Score:精确率和召回率的调和平均值,可以综合考虑模型的准确性和召回能力。
5. ROC曲线和AUC值:ROC曲线是以模型的真正例率(True Positive Rate)为纵轴,假正例率(False Positive Rate)为横轴绘制的曲线,AUC值表示ROC曲线下的面积,用于评估分类模型的性能。
这些指标可以通过模型在训练集和测试集上的预测结果与真实标签进行对比来计算。在评估模型时,我们通常会关注多个指标来全面评估模型的性能。
阅读全文