redis中有哪几种缓存淘汰策略

时间: 2023-06-04 14:08:24 浏览: 28
Redis中有6种缓存淘汰策略,分别是:LRU(Least Recently Used)、LFU(Least Frequently Used)、Random(随机淘汰)、TTL(过期时间淘汰)、Maxmemory policy noeviction(不删除策略)和Maxmemory policy allkeys-lru(全局LRU淘汰)。
相关问题

Redis的缓存淘汰策略具体有哪些?

Redis的缓存淘汰策略有以下几种: 1. LRU(Least Recently Used):最近最少使用,即淘汰最长时间没有被使用的数据。 2. LFU(Least Frequently Used):最不经常使用,即淘汰使用频率最低的数据。 3. Random:随机淘汰一些数据。 4. TTL(Time To Live):根据数据的过期时间来淘汰。 其中,前三种策略都是基于数据使用情况来淘汰的,TTL策略则是基于数据的过期时间来淘汰的。在实际应用中,可以根据具体的业务场景选择适合的策略。

redis缓存淘汰策略

Redis缓存淘汰策略有以下几种: 1. LRU(Least Recently Used):最近最少使用,即优先淘汰最长时间未被使用的数据。 2. LFU(Least Frequently Used):最不经常使用,即优先淘汰访问频率最低的数据。 3. Random:随机淘汰一些数据。 4. TTL(Time To Live):设置过期时间,到期自动淘汰。 5. Maxmemory:设置最大内存限制,当内存超过限制时,优先淘汰数据。 以上是Redis缓存淘汰策略的几种常见方式。

相关推荐

### 回答1: Redis中过期键的删除策略和回收策略通常包括以下几种: 1. 定期删除策略:Redis默认使用该策略。即通过定期遍历数据库中的键值对,删除过期的键值对。缺点是不能保证过期键立即被删除。 2. 惰性删除策略:即在访问某个键时,先检查该键是否过期,如果过期就删除。该策略可以保证过期键立即被删除,但会降低Redis的性能。 3. 压缩策略:当Redis的内存使用达到一定阈值时,Redis会自动触发压缩策略,即尝试删除一些过期键值对,以释放内存空间。该策略的缺点是可能会耗费较长的时间,影响Redis的性能。 4. 哨兵策略:该策略适用于主从架构的Redis集群中。当主节点上的键过期时,主节点会通知从节点删除过期键,保证从节点和主节点的数据一致性。 对于回收策略(淘汰策略),Redis也提供了多种选择: 1. LRU算法:Least Recently Used,即淘汰最近最少使用的键值对。 2. LFU算法:Least Frequently Used,即淘汰最不经常使用的键值对。 3. 随机算法:随机淘汰某个键值对。 4. TTL算法:Time To Live,即淘汰存活时间最短的键值对。 5. 淘汰策略定制:可以根据实际应用场景自定义淘汰策略。 ### 回答2: Redis在处理过期键的删除策略方面采用了惰性删除和定期删除相结合的方式。 惰性删除是指当读取一个过期键时,Redis会先检查键是否过期,如果过期则将其删除,然后返回空值。这种方式的优点是可以保证读取时的性能较高,因为不会额外执行删除操作。然而,由于惰性删除是基于客户端请求的,如果长时间没有读取某个过期键,那么该键将一直存在于内存中。 为了解决惰性删除可能导致过期键无法及时删除的问题,Redis还采取了定期删除策略。定期删除是指Redis每隔一定时间会对部分过期键进行扫描和删除。具体删除的数量取决于配置参数,默认为每秒钟检查10个随机过期键。定期删除策略可以保证即使某个键长时间没有被访问,也可以有机会被删除,从而释放内存空间。 回收策略(淘汰策略)用于在内存不足时,决定哪些键应该被优先删除。Redis提供了多种回收策略供用户选择,常用的有:noeviction、allkeys-lru、allkeys-random等。其中,noeviction表示当内存不足时,不执行任何删除操作,而是直接返回写入错误;allkeys-lru表示使用LRU(Least Recently Used)算法删除最近最少使用的键;allkeys-random表示随机删除一个键。用户可以根据自身的需求选择合适的回收策略来优化系统性能。 总结起来,Redis的过期键删除策略采取了惰性删除和定期删除相结合的方式,通过惰性删除提高读取性能,通过定期删除保证未被访问的过期键能够最终被删除。而回收策略用于在内存不足时进行主动删除操作,以释放内存空间。根据需要,可以选择不同的回收策略来满足不同的需求。

最新推荐

浅谈redis的maxmemory设置以及淘汰策略

下面小编就为大家带来一篇浅谈redis的maxmemory设置以及淘汰策略。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧

Redis缓存穿透,缓存击穿和缓存雪崩

一、缓存处理流程 ...2.从缓存取不到的数据,在数据库中也没有取到,这时也可以将key-value对写为key-null,缓存有效时间可以设置短点,如30秒(设置太长会导致正常情况也没法使用)。这样可以防止攻击用

Spring Boot中使用Redis做缓存的方法实例

主要给大家介绍了关于Spring Boot中使用Redis做缓存的相关资料,文中介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面来一起看看吧。

Java自定义注解实现Redis自动缓存的方法

本篇文章主要介绍了Java自定义注解实现Redis自动缓存的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下。

Spring Cache手动清理Redis缓存

主要介绍了Spring Cache手动清理Redis缓存,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

事件摄像机的异步事件处理方法及快速目标识别

934}{基于图的异步事件处理的快速目标识别Yijin Li,Han Zhou,Bangbang Yang,Ye Zhang,Zhaopeng Cui,Hujun Bao,GuofengZhang*浙江大学CAD CG国家重点实验室†摘要与传统摄像机不同,事件摄像机捕获异步事件流,其中每个事件编码像素位置、触发时间和亮度变化的极性。在本文中,我们介绍了一种新的基于图的框架事件摄像机,即SlideGCN。与最近一些使用事件组作为输入的基于图的方法不同,我们的方法可以有效地逐个事件处理数据,解锁事件数据的低延迟特性,同时仍然在内部保持图的结构。为了快速构建图,我们开发了一个半径搜索算法,该算法更好地利用了事件云的部分正则结构,而不是基于k-d树的通用方法。实验表明,我们的方法降低了计算复杂度高达100倍,相对于当前的基于图的方法,同时保持最先进的性能上的对象识别。此外,我们验证了我们的方�

下半年软件开发工作计划应该分哪几个模块

通常来说,软件开发工作可以分为以下几个模块: 1. 需求分析:确定软件的功能、特性和用户需求,以及开发的目标和约束条件。 2. 设计阶段:根据需求分析的结果,制定软件的架构、模块和接口设计,确定开发所需的技术和工具。 3. 编码实现:根据设计文档和开发计划,实现软件的各项功能和模块,编写测试用例和文档。 4. 测试阶段:对软件进行各种测试,包括单元测试、集成测试、功能测试、性能测试、安全测试等,确保软件的质量和稳定性。 5. 发布和部署:将软件打包发布,并进行部署和安装,确保用户可以方便地使用软件。 6. 维护和更新:对软件进行维护和更新,修复漏洞和Bug,添加新的特性和功能,保证

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

开集域自适应方法及其在靶点发现中的应用

9322基于开集域自适应的新靶点发现Taotao Jing< $,Hongfu LiuXiang,and Zhengming Ding<$†美国杜兰大学计算机科学系‡美国布兰代斯大学Michtom计算机科学学院网址:tjing@tulane.edu,hongfuliu@brandeis.edu,网址:www.example.com,zding1@tulane.edu摘要开集域自适应算法(OSDA)认为目标域包含了在外部源域中未观察到的新类别的样本不幸的是,现有的OSDA方法总是忽略了看不见的类别的信息的需求,并简单地将它们识别为“未知”集合而没有进一步的这促使我们通过探索底层结构和恢复其不可解释的语义属性来更具体地理解未知类别。在本文中,我们提出了一种新的框架,以准确地识别目标领域中的可见类别,并有效地恢复未见过的类别的语义属性具体而言,结构保持部分对齐开发,通过域不变的特征学习识别看到的基于视觉图的属性传播是为了通过视觉语义映射将可见属�