使用mpi多线程从文件中读取矩阵并行矩阵求逆并且输出逆矩阵
时间: 2023-09-16 12:09:59 浏览: 98
这是一个比较复杂的问题,需要一定的MPI编程和线性代数知识。以下是一个简单的示例代码,帮助您理解如何使用MPI多线程从文件中读取矩阵、并行矩阵求逆并输出逆矩阵。
```c
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
#include <math.h>
#include <stdbool.h>
#include <string.h>
#include <time.h>
#define TAG 0
#define ROOT 0
#define MAX_FILENAME_SIZE 256
int rank, size;
MPI_Status status;
void read_matrix(double *matrix, int n, char *filename) {
FILE *fp;
fp = fopen(filename, "r");
if (fp == NULL) {
printf("File open error\n");
return;
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
fscanf(fp, "%lf", &matrix[i * n + j]);
}
}
fclose(fp);
}
void print_matrix(double *matrix, int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
printf("%.2lf ", matrix[i * n + j]);
}
printf("\n");
}
}
void identity_matrix(double *matrix, int n) {
memset(matrix, 0, sizeof(double) * n * n);
for (int i = 0; i < n; i++) {
matrix[i * n + i] = 1.0;
}
}
void matrix_multiplication(double *matrix1, double *matrix2, double *result, int n) {
double *temp = (double*)malloc(sizeof(double) * n * n);
memset(temp, 0, sizeof(double) * n * n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {
temp[i * n + j] += matrix1[i * n + k] * matrix2[k * n + j];
}
}
}
memcpy(result, temp, sizeof(double) * n * n);
free(temp);
}
void swap(double *a, double *b) {
double temp = *a;
*a = *b;
*b = temp;
}
bool is_zero(double val) {
return fabs(val) < 1e-8;
}
bool gauss_elimination(double *matrix, double *inverse, int n) {
int *pivot = (int*)malloc(sizeof(int) * n);
for (int i = 0; i < n; i++) {
pivot[i] = i;
}
for (int k = 0; k < n; k++) {
int max_index = k;
double max_value = fabs(matrix[pivot[k] * n + k]);
for (int i = k+1; i < n; i++) {
if (fabs(matrix[pivot[i] * n + k]) > max_value) {
max_index = i;
max_value = fabs(matrix[pivot[i] * n + k]);
}
}
if (is_zero(max_value)) {
printf("Matrix is not invertible!\n");
return false;
}
if (max_index != k) {
swap(&pivot[k], &pivot[max_index]);
}
double pivot_value = matrix[pivot[k] * n + k];
for (int j = k; j < n; j++) {
matrix[pivot[k] * n + j] /= pivot_value;
inverse[pivot[k] * n + j] /= pivot_value;
}
for (int i = k+1; i < n; i++) {
double factor = matrix[pivot[i] * n + k];
for (int j = k; j < n; j++) {
matrix[pivot[i] * n + j] -= factor * matrix[pivot[k] * n + j];
inverse[pivot[i] * n + j] -= factor * inverse[pivot[k] * n + j];
}
}
}
for (int k = n-1; k >= 0; k--) {
for (int i = k-1; i >= 0; i--) {
double factor = matrix[pivot[i] * n + k];
for (int j = k; j < n; j++) {
matrix[pivot[i] * n + j] -= factor * matrix[pivot[k] * n + j];
inverse[pivot[i] * n + j] -= factor * inverse[pivot[k] * n + j];
}
}
}
free(pivot);
return true;
}
int main(int argc, char **argv) {
if (argc < 2) {
printf("Usage: ./matrix_inverse <filename>\n");
return -1;
}
char filename[MAX_FILENAME_SIZE];
strcpy(filename, argv[1]);
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
double *matrix, *inverse;
int n;
double start_time, end_time;
if (rank == ROOT) {
// Read matrix from file
FILE *fp = fopen(filename, "r");
if (fp == NULL) {
printf("File open error\n");
return -1;
}
fscanf(fp, "%d", &n);
fclose(fp);
matrix = (double*)malloc(sizeof(double) * n * n);
inverse = (double*)malloc(sizeof(double) * n * n);
read_matrix(matrix, n, filename);
identity_matrix(inverse, n);
start_time = MPI_Wtime();
}
MPI_Bcast(&n, 1, MPI_INT, ROOT, MPI_COMM_WORLD);
int rows_per_process = n / size;
double *submatrix = (double*)malloc(sizeof(double) * rows_per_process * n);
double *subinverse = (double*)malloc(sizeof(double) * rows_per_process * n);
MPI_Scatter(matrix, rows_per_process * n, MPI_DOUBLE, submatrix, rows_per_process * n, MPI_DOUBLE, ROOT, MPI_COMM_WORLD);
MPI_Scatter(inverse, rows_per_process * n, MPI_DOUBLE, subinverse, rows_per_process * n, MPI_DOUBLE, ROOT, MPI_COMM_WORLD);
gauss_elimination(submatrix, subinverse, rows_per_process);
MPI_Gather(subinverse, rows_per_process * n, MPI_DOUBLE, inverse, rows_per_process * n, MPI_DOUBLE, ROOT, MPI_COMM_WORLD);
if (rank == ROOT) {
end_time = MPI_Wtime();
printf("Inverse matrix:\n");
print_matrix(inverse, n);
printf("Elapsed time: %lf seconds\n", end_time - start_time);
free(matrix);
free(inverse);
}
free(submatrix);
free(subinverse);
MPI_Finalize();
return 0;
}
```
在这个代码中,我们使用MPI的Scatter和Gather函数来将矩阵分发给多个进程,并将结果收集到主进程中。在主进程中,我们使用MPI_Wtime来计算整个算法的运行时间。在每个进程中,我们使用高斯消元法来求解子矩阵的逆矩阵。最后,我们将所有子矩阵的逆矩阵合并成最终的逆矩阵。
需要注意的是,这个代码仅仅是一个简单的示例,实际上还有很多地方可以优化,比如使用更高效的高斯-约旦消元法、使用更好的矩阵乘法算法等都可以进一步提高运行效率。
阅读全文