flink join流
时间: 2023-11-30 22:04:41 浏览: 78
flink中的join操作可以将两个或多个数据流中的元素进行关联,从而生成一个新的数据流。flink支持多种类型的join操作,包括inner join、left join、right join和full outer join等。下面是一个简单的flink join流的例子:
```python
# 导入必要的库
from pyflink.common.serialization import SimpleStringSchema
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.datastream.connectors import FlinkKafkaConsumer
from pyflink.table import StreamTableEnvironment, EnvironmentSettings
# 创建StreamExecutionEnvironment
env = StreamExecutionEnvironment.get_execution_environment()
env.set_parallelism(1)
# 创建StreamTableEnvironment
settings = EnvironmentSettings.new_instance().in_streaming_mode().use_blink_planner().build()
table_env = StreamTableEnvironment.create(env, environment_settings=settings)
# 定义Kafka数据源
source_topic = "source_topic"
sink_topic = "sink_topic"
properties = {
"bootstrap.servers": "localhost:9092",
"group.id": "test-group"
}
source_schema = SimpleStringSchema()
source = FlinkKafkaConsumer(source_topic, source_schema, properties=properties)
# 读取数据流
source_stream = env.add_source(source)
# 将数据流转换为Table
source_table = table_env.from_data_stream(source_stream, ['key', 'value'])
# 定义第二个数据流
second_source_topic = "second_source_topic"
second_source_schema = SimpleStringSchema()
second_source = FlinkKafkaConsumer(second_source_topic, second_source_schema, properties=properties)
# 读取第二个数据流
second_source_stream = env.add_source(second_source)
# 将第二个数据流转换为Table
second_source_table = table_env.from_data_stream(second_source_stream, ['key', 'second_value'])
# 定义第三个数据流
third_source_topic = "third_source_topic"
third_source_schema = SimpleStringSchema()
third_source = FlinkKafkaConsumer(third_source_topic, third_source_schema, properties=properties)
# 读取第三个数据流
third_source_stream = env.add_source(third_source)
# 将第三个数据流转换为Table
third_source_table = table_env.from_data_stream(third_source_stream, ['key', 'third_value'])
# 将第一个数据流和第二个数据流进行join操作
join_table = source_table.join(second_source_table).where('key == key').select('key, value, second_value')
# 将join结果和第三个数据流进行join操作
result_table = join_table.join(third_source_table).where('key == key').select('key, value, second_value, third_value')
# 将结果写入到Kafka中
result_schema = SimpleStringSchema()
result = result_table.select('key, value, second_value, third_value'). \
.write_to_format('kafka') \
.with_properties(properties) \
.with_topic(sink_topic) \
.with_schema(result_schema)
# 执行任务
env.execute("Flink Join Stream Example")
```
阅读全文