C/C++语言实现RANSAC算法
时间: 2023-12-21 16:03:02 浏览: 102
RANSAC(RANdom SAmple Consensus)是一种经典的模型参数估计算法,常用于计算机视觉、机器学习等领域。下面是使用C/C++实现RANSAC算法的代码示例。
```C++
#include <iostream>
#include <vector>
#include <cmath>
#include <cstdlib>
#include <ctime>
using namespace std;
// 随机取样函数
vector<int> random_sample(int n, int k) {
vector<int> result;
for (int i = 0; i < k; ++i) {
int j = rand() % n;
while (find(result.begin(), result.end(), j) != result.end()) {
j = rand() % n;
}
result.push_back(j);
}
return result;
}
// 计算模型参数函数
vector<double> compute_model(vector<pair<double,double>> data) {
vector<double> result;
double x_mean = 0, y_mean = 0;
for (auto p : data) {
x_mean += p.first;
y_mean += p.second;
}
x_mean /= data.size();
y_mean /= data.size();
double s_xy = 0, s_xx = 0;
for (auto p : data) {
s_xy += (p.first - x_mean) * (p.second - y_mean);
s_xx += (p.first - x_mean) * (p.first - x_mean);
}
double slope = s_xy / s_xx;
double intercept = y_mean - slope * x_mean;
result.push_back(slope);
result.push_back(intercept);
return result;
}
// 计算误差函数
double compute_error(vector<pair<double,double>> data, vector<double> model) {
double error = 0;
for (auto p : data) {
double y = model[0] * p.first + model[1];
error += pow(y - p.second, 2);
}
return sqrt(error / data.size());
}
// RANSAC算法主要过程
vector<double> ransac(vector<pair<double,double>> data, int k, double threshold, int max_iterations) {
vector<double> best_model;
int best_score = 0;
for (int i = 0; i < max_iterations; ++i) {
vector<int> indices = random_sample(data.size(), k);
vector<pair<double,double>> sample_data;
for (auto index : indices) {
sample_data.push_back(data[index]);
}
vector<double> model = compute_model(sample_data);
double error = compute_error(data, model);
int score = 0;
for (auto p : data) {
double y = model[0] * p.first + model[1];
if (abs(y - p.second) < threshold) {
score++;
}
}
if (score > best_score) {
best_score = score;
best_model = model;
}
}
return best_model;
}
int main() {
srand(time(0));
// 生成测试数据
vector<pair<double,double>> data;
for (int i = 0; i < 20; ++i) {
double x = i + rand() / double(RAND_MAX);
double y = 2 * x + rand() / double(RAND_MAX) - 0.5;
data.push_back(make_pair(x, y));
}
// 调用RANSAC算法
vector<double> model = ransac(data, 2, 0.1, 100);
// 输出结果
cout << "Best Model: y = " << model[0] << "x + " << model[1] << endl;
return 0;
}
```
以上代码实现了一个简单的RANSAC算法,用于拟合一组带有噪声的点,得到最佳的直线模型。其中,函数`random_sample()`用于随机取样,函数`compute_model()`用于计算模型参数,函数`compute_error()`用于计算误差,函数`ransac()`为RANSAC算法主要过程。在主函数中,我们生成了一组带有噪声的点作为测试数据,并调用RANSAC算法进行拟合,输出结果为最佳的直线模型。
阅读全文