function SelCh=mutate(SelCh,Pm) NSel=size(SelCh,1); for i=1:NSel if Pm>=rand individual1=SelCh(i,:); individual2=mutate_operator(individual1); SelCh(i,:)=individual2; end end end

时间: 2023-07-15 19:13:22 浏览: 54
这段代码是一个遗传算法中的突变操作函数,它的作用是对种群中的个体进行一定概率的基因突变。 具体来说,这个函数接受两个参数:SelCh表示当前种群,Pm表示基因突变的概率。对于每一个个体,函数以Pm的概率进行基因突变操作,具体实现是调用mutate_operator函数对个体进行突变,并将突变后的个体替换原来的个体。最终返回突变后的种群。 值得注意的是,这里的突变操作是以一定概率进行的,这是为了保证种群的多样性,避免过早陷入局部最优解。而具体的突变操作是由mutate_operator函数实现的,这个函数的实现可能因问题不同而有所不同。
相关问题

%% 变异操作:父代个体变异产生子代个体 function X = Mutate(X, Pm, N, M, q0) NP = size(X,1); for i = 1 : NP x = X(i, 1:N); y = X(i, N+1:N*2); q = X(i, N*2+1:N*3); if rand < Pm r = randperm(N); x(1,r(1:2)) = x(1,r(2:-1:1)); end if rand < Pm r = randi(N); y(r) = M + 1 - y(r); end if rand < Pm a = round(rand(1, N)); q = q + (q0' - ones(1,N)) .* a .* randn(1, N) /5; for j = 1 : N if q(j) < 1 q(j) = 1; end if q(j) > q0(j) q(j) = q0(j); end end end X(i,:) = [x y q]; end详细逐步解释一下这段代码

这段代码实现了一个变异操作函数,用于对父代个体进行变异操作产生子代个体。让我逐步解释这段代码: 1. `function X = Mutate(X, Pm, N, M, q0)`:这是函数的声明部分,它定义了函数名为`Mutate`,输入参数为`X`(染色体矩阵),`Pm`(变异概率),`N`(染色体长度),`M`(限制条件),`q0`(其他参数),输出参数为`X`(变异后的染色体矩阵)。 2. `NP = size(X,1);`:这行代码计算了染色体矩阵`X`的行数,将结果存储在变量`NP`中。这表示种群中个体的数量。 3. `for i = 1 : NP`:这是一个循环语句,从1迭代到NP,用于遍历种群中的每个个体。 4. `x = X(i, 1:N); y = X(i, N+1:N*2); q = X(i, N*2+1:N*3);`:这行代码从染色体矩阵中提取出第i个个体的不同部分,分别存储在变量`x`、`y`和`q`中。 5. `if rand < Pm`:这行代码通过生成一个随机数与变异概率比较,决定是否进行变异操作。 6. `r = randperm(N); x(1,r(1:2)) = x(1,r(2:-1:1));`:这行代码随机生成一个长度为N的排列,并将个体的基因位置进行交换,以实现基因的变异。 7. `if rand < Pm`:这行代码再次通过生成一个随机数与变异概率比较,决定是否进行变异操作。 8. `r = randi(N); y(r) = M + 1 - y(r);`:这行代码随机选择个体的一个基因,并将其值进行变异,新值为M+1减去原来的值。 9. `if rand < Pm`:这行代码再次通过生成一个随机数与变异概率比较,决定是否进行变异操作。 10. `a = round(rand(1, N)); q = q + (q0' - ones(1,N)) .* a .* randn(1, N) /5;`:这行代码生成一个长度为N的随机二进制向量,并通过线性变换对个体的基因进行变异。 11. `for j = 1 : N`:这是一个循环语句,用于遍历个体的每个基因。 12. `if q(j) < 1, q(j) = 1; end`:这行代码对变异后的基因进行限制,如果某个基因小于1,则将其设为1。 13. `if q(j) > q0(j), q(j) = q0(j); end`:这行代码对变异后的基因进行限制,如果某个基因大于q0(j),则将其设为q0(j)。 14. `X(i, :) = [x y q];`:这行代码将变异后的个体的基因重新组合,并将结果存储回染色体矩阵中。 15. `end`:这是循环的结束标记。 总之,这段代码实现了对染色体矩阵中每个个体的变异操作。它通过随机生成的概率决定是否对个体的基因进行变异,变异方式包括基因位置交换、基因值取反和基因值线性变换。变异后的个体存储在输出染色体矩阵`X`中。

解释这段代码function y=Mutate(x,mu,sigma,vmin,vmax) nVar=numel(x); nMu=ceil(mu*nVar); j=randsample(nVar,nMu); if numel(sigma)>1 sigma = sigma(j); end y=x; y(j)=x(j)+sigma.*randn(size(j)); for i=1:1:4 if y(i)>vmax(i) y(i)=vmax(i); end if y(i)<vmin(i) y(i)=vmin(i); end end end

这段代码是一个变异函数,用于在NSGA-II算法中对解进行变异操作。具体来说,该函数的输入参数包括一个解x,变异率mu,变异步长sigma,以及每个变量的下界vmin和上界vmax。函数的输出是一个变异后的解y。 首先,函数计算出要进行变异的变量索引j。j是一个长度为nMu的向量,其中包含nMu个随机选择的变量索引。nMu是通过将变异率mu乘以变量数nVar向上取整得到的。 然后,如果sigma是一个向量,函数从中选择与j相应位置的值作为变异步长。否则,sigma被认为是一个标量,用于所有变异变量。 接下来,函数将y初始化为与x相同的值,然后将j位置的变量进行随机变异。具体来说,每个变异变量的新值是当前值加上一个标准正态分布随机数乘以变异步长。最后,函数将变异后的变量限制在其下界和上界之间。 总之,这段代码实现了一个简单的随机变异操作,用于搜索解空间的更广泛区域。

相关推荐

%%%%遗传算法求解TSP问题%%%%%%%%%%%%%%%%%%%%%%%%%%% clc clear close all load cityposition1.mat X=cityposition1; %城市位置坐标 D=Distance(X); %生成距离矩阵 N=size(X,1); %城市个数 %% %遗传参数 NIND=100; %种群大小 MAXGEN=200; %最大遗传代数 Pc=0.9; %交叉概率 Pm=0.05; %变异概率 GGAP=0.9; %代沟 %% %初始化种群 Chrom=InitPop(NIND,N); %% %画出随机解的路径图 DrawPath(Chrom(1,:),X) pause(0.1) %% %输出随机解的路径和总距离 disp('初始种群中的一个随机值:') Outputpath(Chrom(1,:)); Rlength=Pathlength(D,Chrom(1,:)); disp(['总距离:',num2str(Rlength)]); disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') %% %优化 gen=0; figure; hold on; box on; xlim([0,MAXGEN]) title('优化过程') xlabel('代数') ylabel('最优值') ObjV=Pathlength(D,Chrom); PreObjV=min(ObjV); while gen<MAXGEN %%计算适应度 ObjV=Pathlength(D,Chrom); line([gen-1,gen],[PreObjV,min(ObjV)]); pause(0.0001) PreObjV=min(ObjV); FitnV=Fitness(ObjV); %%选择 SelCh=Select1(Chrom,FitnV); %%交叉 SelCh=Recombin(SelCh,Pc); %%变异 SelCh=Mutate(SelCh,Pm); %%逆转 SelCh=Reverse(SelCh,D); %%重新插入子代的新种群 Chrom=Reins(Chrom,SelCh,ObjV); %%更新迭代次数 gen=gen+1; end ObjV=Pathlength(D,Chrom); [minObjV,minTnd]=min(ObjV); DrawPath(Chrom(minTnd(1),:),X) %%输出最优解的路径和总距离 disp('最优解:') p=Outputpath(Chrom(minTnd(1),:)); disp(['总距离:',num2str(ObjV(minTnd(1)))]); disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')

最新推荐

recommend-type

406_智能小区管家服务系统的设计与实现-源码.zip

提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
recommend-type

毕业设计+项目编程实战+基于BS架构的ASP.NET的新闻管理系统(含程序源代码+毕业设计文档)

前言……………………………………………………………………………….2 第1章 ASP简介…………………………………………………………….…..1 1.1ASP的特点………………………………………………………….1 1.2ASP的优势………………………………………………………….2 1.3 ASP与HTML……………………………………………………….3 1.4 ASP的内置对象……………………………………………………..4 1.4.1 Request对象………………………………………………….4 1.4.2 Response对象………………………………………………..4 第2章 为什么要开发一个新闻发布系统…………………………………………….6 第3章 Access数据库……………………………………………………………8 3.1 数据库概念………………………………………………………….8 3.2 Access数据库特点………………………………………………….8 3.3
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

软件工程每个学期的生活及学习目标

软件工程每个学期的生活及学习目标可能包括以下内容: 1. 学习软件开发的基本理论和实践知识,掌握常用的编程语言和开发工具。 2. 熟悉软件开发的流程和方法,了解软件工程的标准和规范。 3. 掌握软件需求分析、设计、开发、测试、部署和维护的技能,能够独立完成简单的软件开发任务。 4. 培养团队合作的能力,学会与他人进行有效的沟通和协作,共同完成软件开发项目。 5. 提高自己的计算机技术水平,了解最新的软件开发技术和趋势,积极参与开源社区和技术交流活动。 6. 注重学习方法和习惯的培养,养成良好的学习和生活习惯,保持健康的身心状态。 7. 积极参加校内外的实践活动和比赛,拓展自己的视