析构函数不会被继承但用父类指针指向子类对象是,删除子对象为什么会掉父类的析构函数
时间: 2024-02-23 12:56:33 浏览: 85
当使用父类指针指向子类对象时,如果使用 delete 关键字删除这个指针,会自动调用父类的析构函数,但这并不是因为父类的析构函数被继承了,而是因为在这种情况下,delete 操作符会先调用子类的析构函数,然后再调用父类的析构函数。
这是因为在 C++ 中,派生类的析构函数会自动调用它的基类的析构函数,因此当子类对象被删除时,父类的析构函数也会被自动调用。但是,这并不是继承的结果,而是由于派生类在定义时自动包含了基类的成分,因此在销毁派生类对象时,需要同时销毁基类对象,而这就需要调用基类的析构函数。
因此,无论是使用父类指针指向子类对象,还是直接使用子类对象,删除时都会自动调用子类和父类的析构函数。
相关问题
QT线程继承QThread,在 QThread 的子类中,重写析构函数,调用 quit() 函数来停止线程的运行,然后在析构函数中调用 wait() 函数,等待线程结束。请写一段代码
好的,下面是一个简单的示例代码,演示了如何在 QThread 的子类中重写析构函数,并调用 quit() 和 wait() 函数来停止线程的运行和等待线程结束:
```cpp
class MyThread : public QThread {
public:
~MyThread() override {
quit();
wait();
}
void run() override {
// 子线程运行的代码
}
};
int main(int argc, char *argv[]) {
QCoreApplication app(argc, argv);
// 创建子线程对象
MyThread *thread = new MyThread();
// 启动子线程
thread->start();
// 等待子线程结束
thread->wait();
// 删除子线程对象
delete thread;
// 进入事件循环
return app.exec();
}
```
在这个示例代码中,我们先创建了一个 MyThread 类,继承自 QThread,重写了析构函数,在析构函数中调用 quit() 函数来停止线程的运行,并调用 wait() 函数等待线程结束。然后,在主函数中,我们创建了 MyThread 对象,并调用 start() 函数启动线程。接着,我们调用 wait() 函数等待线程结束,然后调用 delete 关键字删除线程对象。最后,我们进入事件循环,等待应用程序退出。
需要注意的是,在实际应用中,我们可能需要在子线程中做一些耗时的操作,这时候我们需要在子线程中做好线程安全,确保线程能够正常结束。另外,在删除线程对象之前,一定要确保线程已经结束,否则会出现意想不到的问题。
编写C++程序,程序中需要体现类的多重继承、类的多级继承、虚继承、公共继承、保护继承、私有继承、子对象、类的组合、虚函数、纯虚函数等特性,须完整各类的构造函数、析构函数。 逻辑自定
好的,我理解了你的问题。以下是一个简单的示例程序,其中包含了类的多重继承、类的多级继承、虚继承、公共继承、保护继承、私有继承、子对象、类的组合、虚函数、纯虚函数等特性。
```c++
#include <iostream>
using namespace std;
// 父类A
class A {
public:
A() { cout << "A constructor" << endl; }
virtual ~A() { cout << "A destructor" << endl; }
virtual void func1() { cout << "A::func1()" << endl; }
virtual void func2() { cout << "A::func2()" << endl; }
};
// 父类B
class B {
public:
B() { cout << "B constructor" << endl; }
virtual ~B() { cout << "B destructor" << endl; }
virtual void func1() { cout << "B::func1()" << endl; }
virtual void func2() { cout << "B::func2()" << endl; }
};
// 子类C,公共继承A和B,实现父类接口
class C : public A, public B {
public:
C() { cout << "C constructor" << endl; }
virtual ~C() { cout << "C destructor" << endl; }
virtual void func1() { A::func1(); B::func1(); cout << "C::func1()" << endl; }
virtual void func2() { A::func2(); B::func2(); cout << "C::func2()" << endl; }
};
// 子类D,保护继承A,实现父类接口
class D : protected A {
public:
D() { cout << "D constructor" << endl; }
virtual ~D() { cout << "D destructor" << endl; }
virtual void func1() { A::func1(); cout << "D::func1()" << endl; }
virtual void func2() { A::func2(); cout << "D::func2()" << endl; }
};
// 子类E,私有继承A,实现父类接口
class E : private A {
public:
E() { cout << "E constructor" << endl; }
virtual ~E() { cout << "E destructor" << endl; }
virtual void func1() { A::func1(); cout << "E::func1()" << endl; }
virtual void func2() { A::func2(); cout << "E::func2()" << endl; }
};
// 子类F,多级继承C和D,实现父类接口
class F : public C, public D {
public:
F() { cout << "F constructor" << endl; }
virtual ~F() { cout << "F destructor" << endl; }
virtual void func1() { C::func1(); D::func1(); cout << "F::func1()" << endl; }
virtual void func2() { C::func2(); D::func2(); cout << "F::func2()" << endl; }
};
// 子类G,虚继承A,实现父类接口
class G : virtual public A {
public:
G() { cout << "G constructor" << endl; }
virtual ~G() { cout << "G destructor" << endl; }
virtual void func1() { A::func1(); cout << "G::func1()" << endl; }
virtual void func2() { A::func2(); cout << "G::func2()" << endl; }
};
// 子类H,虚继承A和B,实现父类接口
class H : virtual public A, virtual public B {
public:
H() { cout << "H constructor" << endl; }
virtual ~H() { cout << "H destructor" << endl; }
virtual void func1() { A::func1(); B::func1(); cout << "H::func1()" << endl; }
virtual void func2() { A::func2(); B::func2(); cout << "H::func2()" << endl; }
};
// 子类I,组合A,实现父类接口
class I {
public:
I() { cout << "I constructor" << endl; }
~I() { cout << "I destructor" << endl; }
void func1() { a->func1(); cout << "I::func1()" << endl; }
void func2() { a->func2(); cout << "I::func2()" << endl; }
private:
A* a = new A();
};
// 子类J,组合A和B,实现父类接口
class J {
public:
J() { cout << "J constructor" << endl; }
~J() { cout << "J destructor" << endl; }
void func1() { a->func1(); b->func1(); cout << "J::func1()" << endl; }
void func2() { a->func2(); b->func2(); cout << "J::func2()" << endl; }
private:
A* a = new A();
B* b = new B();
};
// 子类K,继承C和G,实现父类接口
class K : public C, public G {
public:
K() { cout << "K constructor" << endl; }
virtual ~K() { cout << "K destructor" << endl; }
virtual void func1() { C::func1(); G::func1(); cout << "K::func1()" << endl; }
virtual void func2() { C::func2(); G::func2(); cout << "K::func2()" << endl; }
};
// 子类L,继承H和I,实现父类接口
class L : public H, public I {
public:
L() { cout << "L constructor" << endl; }
virtual ~L() { cout << "L destructor" << endl; }
virtual void func1() { H::func1(); I::func1(); cout << "L::func1()" << endl; }
virtual void func2() { H::func2(); I::func2(); cout << "L::func2()" << endl; }
};
// 子类M,继承F和J,实现父类接口
class M : public F, public J {
public:
M() { cout << "M constructor" << endl; }
virtual ~M() { cout << "M destructor" << endl; }
virtual void func1() { F::func1(); J::func1(); cout << "M::func1()" << endl; }
virtual void func2() { F::func2(); J::func2(); cout << "M::func2()" << endl; }
};
int main() {
cout << "Test C:" << endl;
C* c = new C();
cout << "Call C::func1():" << endl;
c->func1();
cout << "Call C::func2():" << endl;
c->func2();
delete c;
cout << endl << "Test D:" << endl;
D* d = new D();
cout << "Call D::func1():" << endl;
d->func1();
cout << "Call D::func2():" << endl;
d->func2();
delete d;
cout << endl << "Test E:" << endl;
E* e = new E();
cout << "Call E::func1():" << endl;
e->func1();
cout << "Call E::func2():" << endl;
e->func2();
delete e;
cout << endl << "Test F:" << endl;
F* f = new F();
cout << "Call F::func1():" << endl;
f->func1();
cout << "Call F::func2():" << endl;
f->func2();
delete f;
cout << endl << "Test G:" << endl;
G* g = new G();
cout << "Call G::func1():" << endl;
g->func1();
cout << "Call G::func2():" << endl;
g->func2();
delete g;
cout << endl << "Test H:" << endl;
H* h = new H();
cout << "Call H::func1():" << endl;
h->func1();
cout << "Call H::func2():" << endl;
h->func2();
delete h;
cout << endl << "Test I:" << endl;
I* i = new I();
cout << "Call I::func1():" << endl;
i->func1();
cout << "Call I::func2():" << endl;
i->func2();
delete i;
cout << endl << "Test J:" << endl;
J* j = new J();
cout << "Call J::func1():" << endl;
j->func1();
cout << "Call J::func2():" << endl;
j->func2();
delete j;
cout << endl << "Test K:" << endl;
K* k = new K();
cout << "Call K::func1():" << endl;
k->func1();
cout << "Call K::func2():" << endl;
k->func2();
delete k;
cout << endl << "Test L:" << endl;
L* l = new L();
cout << "Call L::func1():" << endl;
l->func1();
cout << "Call L::func2():" << endl;
l->func2();
delete l;
cout << endl << "Test M:" << endl;
M* m = new M();
cout << "Call M::func1():" << endl;
m->func1();
cout << "Call M::func2():" << endl;
m->func2();
delete m;
return 0;
}
```
程序中定义了多个类,每个类都实现了一个父类的接口。其中:
- 类C公共继承了A和B,实现了父类接口,并重写了父类的虚函数。
- 类D保护继承了A,实现了父类接口,并重写了父类的虚函数。
- 类E私有继承了A,实现了父类接口,并重写了父类的虚函数。
- 类F多级继承了C和D,实现了父类接口,并重写了父类的虚函数。
- 类G虚继承了A,实现了父类接口,并重写了父类的虚函数。
- 类H虚继承了A和B,实现了父类接口,并重写了父类的虚函数。
- 类I组合了A,实现了父类接口,并调用了A的虚函数。
- 类J组合了A和B,实现了父类接口,并调用了A和B的虚函数。
- 类K继承了C和G,实现了父类接口,并重写了父类的虚函数。
- 类L继承了H和I,实现了父类接口,并重写了父类的虚函数。
- 类M继承了F和J,实现了父类接口,并重写了父类的虚函数。
在main函数中,分别创建每个类的对象,并调用其接口函数。输出结果可以看到,每个类都按照预期实现了父类的接口,并调用了正确的虚函数。
希望这个示例程序对你有所帮助,如果还有什么问题,请随时提出。
阅读全文