你能否给出pytorch实现self attention gan的代码
时间: 2023-03-26 12:03:14 浏览: 108
我可以回答这个问题,以下是pytorch实现self attention gan的代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class SelfAttention(nn.Module):
def __init__(self, in_dim):
super(SelfAttention, self).__init__()
self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
batch_size, C, H, W = x.size()
proj_query = self.query_conv(x).view(batch_size, -1, H*W).permute(, 2, 1)
proj_key = self.key_conv(x).view(batch_size, -1, H*W)
energy = torch.bmm(proj_query, proj_key)
attention = F.softmax(energy, dim=-1)
proj_value = self.value_conv(x).view(batch_size, -1, H*W)
out = torch.bmm(proj_value, attention.permute(, 2, 1))
out = out.view(batch_size, C, H, W)
out = self.gamma * out + x
return out
class Generator(nn.Module):
def __init__(self, z_dim=100, image_size=64, conv_dim=64):
super(Generator, self).__init__()
self.image_size = image_size
self.fc = nn.Linear(z_dim, (image_size//16)*(image_size//16)*8*conv_dim)
self.conv1 = nn.ConvTranspose2d(8*conv_dim, 4*conv_dim, 4, 2, 1)
self.conv2 = nn.ConvTranspose2d(4*conv_dim, 2*conv_dim, 4, 2, 1)
self.conv3 = nn.ConvTranspose2d(2*conv_dim, conv_dim, 4, 2, 1)
self.conv4 = nn.ConvTranspose2d(conv_dim, 3, 4, 2, 1)
self.bn1 = nn.BatchNorm2d(8*conv_dim)
self.bn2 = nn.BatchNorm2d(4*conv_dim)
self.bn3 = nn.BatchNorm2d(2*conv_dim)
self.bn4 = nn.BatchNorm2d(conv_dim)
self.attn1 = SelfAttention(8*conv_dim)
self.attn2 = SelfAttention(4*conv_dim)
def forward(self, z):
out = self.fc(z)
out = out.view(-1, 8*self.conv_dim, self.image_size//16, self.image_size//16)
out = F.relu(self.bn1(out))
out = F.relu(self.bn2(self.conv1(out)))
out = self.attn1(out)
out = F.relu(self.bn3(self.conv2(out)))
out = self.attn2(out)
out = F.relu(self.bn4(self.conv3(out)))
out = torch.tanh(self.conv4(out))
return out
class Discriminator(nn.Module):
def __init__(self, image_size=64, conv_dim=64):
super(Discriminator, self).__init__()
self.conv1 = nn.Conv2d(3, conv_dim, 4, 2, 1)
self.conv2 = nn.Conv2d(conv_dim, 2*conv_dim, 4, 2, 1)
self.conv3 = nn.Conv2d(2*conv_dim, 4*conv_dim, 4, 2, 1)
self.conv4 = nn.Conv2d(4*conv_dim, 1, 4, 1, )
self.bn1 = nn.BatchNorm2d(conv_dim)
self.bn2 = nn.BatchNorm2d(2*conv_dim)
self.bn3 = nn.BatchNorm2d(4*conv_dim)
self.attn1 = SelfAttention(conv_dim)
self.attn2 = SelfAttention(2*conv_dim)
def forward(self, x):
out = F.leaky_relu(self.conv1(x), .2)
out = self.attn1(out)
out = F.leaky_relu(self.bn2(self.conv2(out)), .2)
out = self.attn2(out)
out = F.leaky_relu(self.bn3(self.conv3(out)), .2)
out = self.conv4(out)
return out.view(-1, 1)
```
希望能对你有所帮助!
阅读全文