torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 16.00 MiB (GPU 0; 8.00 GiB total capacity; 6.36 GiB already allocated; 0 bytes free; 6.44 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
时间: 2023-11-06 16:42:50 浏览: 179
这个错误是由于CUDA内存不足引起的。您可以尝试以下解决方法之一:
1. 减少您模型的批处理大小(batch size),以减少内存需求。
2. 减少模型的复杂度,例如减少层数或减少参数数量。
3. 确保只在需要时在GPU上分配和使用张量。在不使用的时候,及时释放不需要的张量。
4. 如果您的GPU有多个显存,可以尝试使用其他GPU。
5. 如果您使用的是PyTorch 1.6或更高版本,可以尝试设置`max_split_size_mb`参数来避免内存碎片化。您可以在PyTorch的内存管理文档中找到更多信息。
希望这些方法能够帮助您解决CUDA内存不足的问题!如果还有其他问题,请随时提问。
相关问题
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 2.00 GiB total capacity; 1.67 GiB a
vailable; 40.00 KiB already allocated; 19.94 MiB free; 4.00 MiB cached)
This error message indicates that the program tried to allocate 20.00 MiB of memory on the GPU, but there was not enough memory available. The GPU has a total capacity of 2.00 GiB, but only 1.67 GiB was available at the time. 40.00 KiB had already been allocated, leaving only 19.94 MiB free. Additionally, 4.00 MiB had been cached, which means that it was reserved for future use but not currently in use.
To resolve this issue, you can try one or more of the following:
1. Reduce the size of the input data or the size of the model being used. This will reduce the amount of memory required.
2. Increase the GPU memory capacity. If possible, add more memory to the GPU or switch to a GPU with a larger memory capacity.
3. Use a smaller batch size. This will reduce the amount of memory required for each iteration.
4. Use gradient checkpointing. This technique allows the model to compute gradients for small subsets of parameters at a time, reducing the amount of memory required.
5. Use mixed precision training. This technique allows the model to use 16-bit floating point numbers instead of 32-bit, reducing the amount of memory required.
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 14.00 MiB (GPU 0; 4.00 GiB total capacity; 3.21 G
这个错误表示在分配CUDA内存时出现了问题,因为GPU的内存不足。你可以尝试以下几种方法来解决这个问题:
1. 减少模型的大小:如果你使用的模型比较大,可以尝试使用更小的模型或减少模型的参数数量。
2. 减少批次大小:减少每个批次中样本的数量,以减少内存的使用量。
3. 释放不必要的内存:在每个批次处理完后,通过调用`torch.cuda.empty_cache()`释放不必要的内存。
4. 使用更高容量的GPU:如果你有更高容量的GPU可用,可以尝试切换到使用该GPU。
5. 使用分布式训练:如果你有多个GPU可用,可以尝试使用分布式训练将模型参数分布到多个GPU上,以减少单个GPU上的内存使用。
请注意,如果你的代码在CPU上运行正常,但在GPU上出现内存问题,那么很可能是由于GPU的内存限制导致的。
阅读全文