用已有的多维时间序列数据对比lstm预测模型和transformer预测模型并且可视化python代码

时间: 2024-02-17 18:00:41 浏览: 36
好的,我可以为您提供一些代码和思路来对比LSTM和Transformer模型在时间序列预测方面的表现。 首先,我们需要准备数据。假设我们有一个包含多个时间序列的数据集,每个序列都有多个维度。我们可以使用Pandas库来读取和处理数据: ```python import pandas as pd # 读取数据集 df = pd.read_csv('data.csv') # 将数据集按时间步长排序 df = df.sort_values(by=['time']) # 将数据集分为训练集和测试集 train_size = int(len(df) * 0.8) train_df = df[:train_size] test_df = df[train_size:] ``` 接下来,我们可以定义一个函数来将数据集转换为适合LSTM和Transformer模型的格式。对于LSTM模型,我们需要将每个序列转换为多个时间步长的输入/输出序列。对于Transformer模型,我们需要将所有序列合并为一个大的输入序列,并使用位置编码来表示不同的时间步长: ```python import numpy as np def prepare_data_lstm(df, num_timesteps): X = [] y = [] for i in range(num_timesteps, len(df)): X.append(df[i-num_timesteps:i].values) y.append(df[i].values) X = np.array(X) y = np.array(y) return X, y def prepare_data_transformer(df, num_timesteps): X = [] for i in range(num_timesteps, len(df)): X.append(df[i-num_timesteps:i].values) X = np.array(X) return X # 定义时间步长 num_timesteps = 10 # 准备LSTM模型的训练数据 X_train_lstm, y_train_lstm = prepare_data_lstm(train_df, num_timesteps) X_test_lstm, y_test_lstm = prepare_data_lstm(test_df, num_timesteps) # 准备Transformer模型的训练数据 X_train_transformer = prepare_data_transformer(train_df, num_timesteps) X_test_transformer = prepare_data_transformer(test_df, num_timesteps) ``` 现在,我们可以定义LSTM和Transformer模型并训练它们。这里我们使用Keras库来定义模型和训练模型: ```python from keras.models import Sequential from keras.layers import LSTM, Dense, Dropout, Input from keras.models import Model from keras.layers import LayerNormalization from keras.layers import MultiHeadAttention, Add, Dropout, Flatten # 定义LSTM模型 lstm_model = Sequential() lstm_model.add(LSTM(units=128, input_shape=(X_train_lstm.shape[1], X_train_lstm.shape[2]))) lstm_model.add(Dropout(0.2)) lstm_model.add(Dense(units=y_train_lstm.shape[1])) lstm_model.compile(optimizer='adam', loss='mse') # 训练LSTM模型 lstm_model.fit(X_train_lstm, y_train_lstm, epochs=50, batch_size=32, validation_split=0.1, shuffle=False) # 定义Transformer模型 def create_transformer_model(): inputs = Input(shape=(X_train_transformer.shape[1], X_train_transformer.shape[2])) x = MultiHeadAttention(num_heads=8, key_dim=X_train_transformer.shape[2]//8)(inputs, inputs) x = Add()([inputs, x]) x = LayerNormalization()(x) x = Dropout(0.2)(x) x = Dense(X_train_transformer.shape[2], activation='relu')(x) x = Dense(y_train_transformer.shape[2])(x) model = Model(inputs=inputs, outputs=x) model.compile(optimizer='adam', loss='mse') return model transformer_model = create_transformer_model() # 训练Transformer模型 transformer_model.fit(X_train_transformer, y_train_transformer, epochs=50, batch_size=32, validation_split=0.1, shuffle=False) ``` 训练完成之后,我们可以使用测试集来比较LSTM和Transformer模型的预测表现。这里我们可以使用Matplotlib库来可视化结果: ```python import matplotlib.pyplot as plt # 对比LSTM模型和Transformer模型的预测表现 lstm_predictions = lstm_model.predict(X_test_lstm) transformer_predictions = transformer_model.predict(X_test_transformer) # 可视化LSTM模型和Transformer模型的预测结果 plt.plot(y_test_lstm[:,0], label='true') plt.plot(lstm_predictions[:,0], label='lstm') plt.plot(transformer_predictions[:,0], label='transformer') plt.legend() plt.show() ``` 这段代码将会生成一个可视化图形,其中包括了真实值、LSTM模型预测值和Transformer模型预测值。您可以通过观察图形来比较两种模型的表现。 总体而言,LSTM模型通常在时间序列预测方面表现较好,但是Transformer模型在某些情况下也可以获得更好的结果。具体哪种模型更适合取决于您的数据集和应用场景。

相关推荐

最新推荐

recommend-type

Python中利用LSTM模型进行时间序列预测分析的实现

主要介绍了Python中利用LSTM模型进行时间序列预测分析的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

用Python的长短期记忆神经网络进行时间序列预测

如何准备数据,开发和评估用于时间序列预测的LSTM递归神经网络。 1. 洗发水销售额数据集; 2. 测试设置; 3. 持续性模型预测; 4. LSTM数据准备; 5. LSTM模型开发; 6. LSTM预测; 7. 完整的LSTM例子; 8. 开发...
recommend-type

基于LSTM循环神经网络的故障时间序列预测_王鑫.pdf

从复杂系统的历史故障数据出发,提出了一种基于长短期记忆(LSTM)循环神经网络的故障时间序列预测方法,包括网络结构设计、网络训练和预测过程实现算法等,进一步以预测误差最小为目标,提出了一种基于多层网格搜索的LSTM...
recommend-type

keras在构建LSTM模型时对变长序列的处理操作

主要介绍了keras在构建LSTM模型时对变长序列的处理操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

【预测模型】基于贝叶斯优化的LSTM模型实现数据预测matlab源码.pdf

【预测模型】基于贝叶斯优化的LSTM模型实现数据预测matlab源码.pdf
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

输出删除n个数字,使得被删后的数字最小

对于这个问题,我可以提供一个基于贪心算法的解法。具体来说,我们可以首先遍历一遍数字序列,从左往右找到第一个比它右边的数字大的位置,然后删除这个位置的数字,并重置遍历起点为当前位置。重复这个过程,直到已经删除了n个数字或者数字序列已经被完全遍历。 代码实现如下: ``` def remove_digits(num, n): result = [] for i in range(len(num)): while n > 0 and result and result[-1] > num[i]: result.pop()
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。