python实现lstm多步预测
时间: 2023-08-06 12:07:36 浏览: 85
A-LSTM 遗传算法优化的lstm 预测代码 python实现.zip
### 回答1:
LSTM(长短时记忆网络)是一种常用的循环神经网络,它能够有效地处理序列数据。在进行多步预测时,我们需要使用前面的多个时间步来预测后面的多个时间步。下面是一个简单的Python实现:
首先,我们需要导入必要的库:
```python
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense, LSTM
from sklearn.preprocessing import MinMaxScaler
```
然后,我们读取数据并进行归一化处理:
```python
# 读取数据
data = pd.read_csv('data.csv', usecols=[1])
# 将数据转换为数组并进行归一化处理
dataset = data.values.astype('float32')
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)
```
接下来,我们将数据集划分为训练集和测试集,并将其转换为适当的输入和输出格式:
```python
# 划分训练集和测试集
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
# 将数据转换为适当的输入和输出格式
def create_dataset(dataset, look_back=1, look_forward=1):
dataX, dataY = [], []
for i in range(len(dataset)-(look_back+look_forward)+1):
a = dataset[i:(i+look_back), 0]
dataX.append(a)
b = dataset[(i+look_back):(i+look_back+look_forward), 0]
dataY.append(b)
return np.array(dataX), np.array(dataY)
look_back = 5
look_forward = 3
trainX, trainY = create_dataset(train, look_back, look_forward)
testX, testY = create_dataset(test, look_back, look_forward)
# 将输入数据转换为[LSTM样本数,时间步长,特征数]的格式
trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))
testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1))
```
接下来,我们定义LSTM模型并进行训练:
```python
# 定义LSTM模型
model = Sequential()
model.add(LSTM(50, input_shape=(look_back, 1)))
model.add(Dense(look_forward))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)
```
最后,我们进行多步预测并计算RMSE值:
```python
# 进行多步预测
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
# 将预测结果转换为原始数据范围内的值
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform(trainY)
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform(testY)
# 计算RMSE值
trainScore = np.sqrt(np.mean(np.square(trainY - trainPredict)))
testScore = np.sqrt(np.mean(np.square(testY - testPredict)))
print('Train RMSE: %.2f' % (trainScore))
print('Test RMSE: %.2f' % (testScore))
```
完整代码如下:
```python
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense, LSTM
from sklearn.preprocessing import MinMaxScaler
# 读取数据
data = pd.read_csv('data.csv', usecols=[1])
# 将数据转换为数组并进行归一化处理
dataset = data.values.astype('float32')
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)
# 划分训练集和测试集
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
# 将数据转换为适当的输入和输出格式
def create_dataset(dataset, look_back=1, look_forward=1):
dataX, dataY = [], []
for i in range(len(dataset)-(look_back+look_forward)+1):
a = dataset[i:(i+look_back), 0]
dataX.append(a)
b = dataset[(i+look_back):(i+look_back+look_forward), 0]
dataY.append(b)
return np.array(dataX), np.array(dataY)
look_back = 5
look_forward = 3
trainX, trainY = create_dataset(train, look_back, look_forward)
testX, testY = create_dataset(test, look_back, look_forward)
# 将输入数据转换为[LSTM样本数,时间步长,特征数]的格式
trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))
testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1))
# 定义LSTM模型
model = Sequential()
model.add(LSTM(50, input_shape=(look_back, 1)))
model.add(Dense(look_forward))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)
# 进行多步预测
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
# 将预测结果转换为原始数据范围内的值
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform(trainY)
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform(testY)
# 计算RMSE值
trainScore = np.sqrt(np.mean(np.square(trainY - trainPredict)))
testScore = np.sqrt(np.mean(np.square(testY - testPredict)))
print('Train RMSE: %.2f' % (trainScore))
print('Test RMSE: %.2f' % (testScore))
```
### 回答2:
在Python中使用LSTM模型进行多步预测可以通过以下步骤实现:
1. 导入所需的库,如tensorflow、keras等。
```python
import numpy as np
import tensorflow as tf
from keras.models import Sequential
from keras.layers import LSTM, Dense
```
2. 准备数据集,通常情况下,数据集应该是一个二维数组,其中每一行代表一个时间步,每一列代表一个特征。
```python
data = # 准备好的数据集,shape为 (n_samples, n_features)
```
3. 准备训练数据和目标数据。对于LSTM,需要将数据转换成时间步的格式,例如使用滑窗法。
```python
n_steps = 3 # 时间步数
X = []
y = []
for i in range(n_steps, len(data)):
X.append(data[i-n_steps:i])
y.append(data[i])
X = np.array(X)
y = np.array(y)
```
4. 构建LSTM模型。
```python
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(n_steps, n_features)))
model.add(Dense(n_features))
model.compile(optimizer='adam', loss='mse')
```
5. 拟合模型并进行预测。
```python
model.fit(X, y, epochs=100, batch_size=32)
# 进行多步预测
n_steps_new = 3 # 新的时间步数,和之前训练时的时间步数保持一致
X_new = data[-n_steps_new:]
predictions = []
for _ in range(num_predictions):
pred = model.predict(X_new.reshape(1, n_steps_new, n_features))
predictions.append(pred[0])
X_new = np.append(X_new[1:], pred, axis=0)
predictions = np.array(predictions)
```
通过上述步骤,便可在Python中使用LSTM模型进行多步预测。
阅读全文