img{i_3}=imread(strcat(PathName_img,FileName_img{i_3})); img{i_3}=imresize(img{i_3},eval(scale{1}));解释这段代码
时间: 2024-05-27 20:10:07 浏览: 78
这段代码是用来读取图像并改变其大小的。具体解释如下:
- imread(strcat(PathName_img,FileName_img{i_3})):使用Matlab内置函数imread(),从指定文件夹路径(PathName_img)中读取第i_3个文件的图像数据,并将其存储在img{i_3}中。
- imresize(img{i_3},eval(scale{1})):使用Matlab内置函数imresize(),调整图像大小为scale{1}所指定的大小。eval()函数用于将字符串类型的表达式转换为Matlab可执行的代码。因此,scale{1}应该是一个字符串,例如'0.5',表示将原图像大小缩小为50%。最终,将调整后的图像数据存储在img{i_3}中。
相关问题
image_1=imread(strcat(pathname,filename));什么意思
这行代码是 MATLAB 中读取图像的函数 imread 的语法。它的意思是从指定路径和文件名中读取图像,将其存储在变量 image_1 中。在这里,pathname 是图像文件所在的路径,filename 是图像文件的名称。strcat 函数是将 pathname 和 filename 连接起来形成完整的文件路径的函数。
clc clear all %% img_in = imread('ILSVRC2017_test_00000237.jpg'); m = size(img_in,1); n = size(img_in,2); img_lab = rgb2lab(img_in); img_L_mean = mean(mean(img_lab(:,:,1))); img_a_mean = mean(mean(img_lab(:,:,2))); img_b_mean = mean(mean(img_lab(:,:,3))); %% %高斯滤波 img_R = img_in(:,:,1); img_G = img_in(:,:,2); img_B = img_in(:,:,3); w = fspecial('gaussian',[7 7]); img_R_blur = imfilter(img_R,w); img_G_blur = imfilter(img_G,w); img_B_blur = imfilter(img_B,w); img_blur = cat(3,img_R_blur,img_G_blur,img_B_blur); figure('name','滤波') imshow(img_blur) img_lab_blur = rgb2lab(img_blur); %% %计算显著图 Sd = zeros(m,n); for i = 1:m for j = 1:n Sd(i,j) = sqrt((img_L_mean - img_lab_blur(i,j,1))^2 + (img_a_mean - img_lab_blur(i,j,2))^2 + (img_b_mean - img_lab_blur(i,j,3))^2); end end %归一化 Sd_normalized = figure_normalize(Sd); imwrite(Sd_normalized,'FT_saliency.jpg') figure imshow(Sd_normalized) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Out_image = figure_normalize(In_image) % 归一化至0-1 o_max_image = max(max(In_image)); o_min_image = min(min(In_image)); Out_image = double(In_image - o_min_image)/double(o_max_image - o_min_image); end改进该代码使其能在matlab上运行
clc;
clear all;
img_in = imread('ILSVRC2017_test_00000237.jpg');
m = size(img_in,1);
n = size(img_in,2);
img_lab = rgb2lab(img_in);
img_L_mean = mean(mean(img_lab(:,:,1)));
img_a_mean = mean(mean(img_lab(:,:,2)));
img_b_mean = mean(mean(img_lab(:,:,3)));
%高斯滤波
img_R = img_in(:,:,1);
img_G = img_in(:,:,2);
img_B = img_in(:,:,3);
w = fspecial('gaussian',[7 7]);
img_R_blur = imfilter(img_R,w);
img_G_blur = imfilter(img_G,w);
img_B_blur = imfilter(img_B,w);
img_blur = cat(3,img_R_blur,img_G_blur,img_B_blur);
figure('Name','滤波');
imshow(img_blur);
img_lab_blur = rgb2lab(img_blur);
%计算显著图
Sd = zeros(m,n);
for i = 1:m
for j = 1:n
Sd(i,j) = sqrt((img_L_mean - img_lab_blur(i,j,1))^2 + (img_a_mean - img_lab_blur(i,j,2))^2 + (img_b_mean - img_lab_blur(i,j,3))^2);
end
end
%归一化
Sd_normalized = figure_normalize(Sd);
imwrite(Sd_normalized,'FT_saliency.jpg');
figure;
imshow(Sd_normalized);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Out_image = figure_normalize(In_image)
o_max_image = max(max(In_image));
o_min_image = min(min(In_image));
Out_image = double(In_image - o_min_image)/double(o_max_image - o_min_image);
end
阅读全文